Ai bít chỉ giúp nhé!! Ai bít chỉ giúp em bài này nhé: Cho hình vuông ABCD. M,N,P,Q là trung điểm AB, BC, CD, DA và phân giác DK của góc MDC(K thuộc BC). Chứng minh CK+AM=AP.
Ko viết được căn bậc 2 như thế nào cả, đành hướng dẫn cho bạn giải nhé. Kéo dài DM cắt CB kéo dài tại L. gọi độ dài cạnh hình vuông là a, tính AP theo a. AM =a/2. Trong tam giác DLK có DL/DC = LK/CK , =>DL/DC +1= LK/CK +1=> 2.DM/a = 2.a/CK=> tính được CK, tính CM+AM so sánh KQ với DM, =nhau đấy. Được nx100yt sửa chữa / chuyển vào 15:31 ngày 06/01/2007
đuờng AP = đuờng DM gọi mỗi cạnh hình vuông là 2a thiAD = 2a, AM = a vậy DM = a căn 5 (a squart 5) vì điểm K nằm trên đuờng phân giác của góc MDC nên KH = KC hay DH = DC = 2a xin xem hình vậy MH = DM - DH MH = a căn 5 - 2a xét tứ giác nội tiếp MBKH ta có MB2 + BK2 = KH2 + HM2 gọi NK là x , thay vào ta có a2 + (a - x)2 = (a + x)2 + (a căn 5 - 2a )2 giải phuơng trình này ta tính ra x = a căn 5 - 2a hay NK = MH vây AM + CK = DM =AP đã đuợc chứng minh