1. Tuyển Mod quản lý diễn đàn. Các thành viên xem chi tiết tại đây

Kể chuyện về kim loại

Chủ đề trong 'Hoá học' bởi Hihihahihi, 15/02/2003.

  1. 0 người đang xem box này (Thành viên: 0, Khách: 0)
  1. T_N_T

    T_N_T Thành viên tích cực

    Tham gia ngày:
    26/07/2002
    Bài viết:
    694
    Đã được thích:
    1
    Kể chuyện về kim loại (phần 24)​
    Thần bản mệnh hào hiệp - Hành vi "thách thức" - Bí ẩn mới - Đài kỷ niệm bằng "vật không gỉ" - "Buổi hoà nhạc" bị bãi bỏ - Uống chè với kem ư? - Thép có "vảy".
    Để tách được nguyên tố mới này ở dạng tinh khiết đã cần tới một khoảng thời gian là hơn nửa thế kỷ: năm 1845, nhà bác học người Đức là Bunzen đã làm được việc này bằng cách điện phân crom clorua.
    Khác với nhiều kim loại khác, thần bản mệnh đã tỏ rõ lòng hào hiệp đối với crom ngay từ đầu. Nhiệt độ nóng chảy cao, độ cứng lớn, khả năng dễ liên kết với nhiều nguyên tố khác để tạo thành hợp kim, đặc biệt là với sắt, đã khiến các nhà luyện kim để ý đến crom trước tiên. Năm tháng không làm nguội lạnh sự quan tâm đó: cho đến ngày nay, ngành luyện kim vẫn là ngành tiêu thụ crom nhiều nhất mặc dù nguyên tố này đã tìm được khá nhiều công việc có ích khác.

    Crom có đủ tất cả những tính chất đặc trưng của các kim loại: dẫn điện và dẫn nhiệt tốt, có ánh kim - một thuộc tính có ở đa số các kim loại. Một đặc điểm rất đáng chú ý của crom là: ở nhiệt độ khoảng 37 độ C, nó xử sự một cách ?othách thức? rõ rệt: nhiều tính chất vật lý của nó thay đổi đột ngột, có bước nhảy vọt. Ở điểm nhiệt độ này, ma sát trong của crom đạt giá trị lớn nhất, còn môđun đàn hồi thì tụt xuống mức nhỏ nhất. Độ dẫn điện, hệ số giãn dài, sức nhiệt điện động cũng thay đổi bất ngờ như vậy.
    Trong khi các nhà bác học đang cố gắng giải thích sự bất thường này thì crom lại đưa ra một sự thách đố nữa. Từ lâu các nhà vật lý học đều biết một quy luật: cấu trúc từ tính của một loại vật liệu tương ứng rất chặt chẽ với mạng tinh thể của nó. Nhưng các cuộc nghiên cứu về crom siêu tinh khiết đã cho thấy rằng, quy luật này lại chẳng có quan hệ gì với crom cả.
    Ngay cả những lượng tạp chất không đáng kể cũng làm cho crom trở nên rất giòn, vì thế mà trong thực tế người ta không sử dụng nó làm vật liệu kết cấu, còn với vai trò là một nguyên tố điều chất thì từ lâu crom đã được các nhà luyện kim quý trọng. Chỉ cần pha thêm một lượng nhỏ crom vào cũng đủ làm cho thép có độ cứng và độ chống mòn cao hơn. Những tính chất như vậy rất cần cho loại thép dùng làm bi mà trong thành phần của nó, ngoài crom (đến 1,5%) ra, còn có cacbon (gần 1%). Crom cacbua tạo thành trong loại thép đó có độ cứng rất cao, cho phép thép chống chọi rất tốt với một trong những kẻ thù nguy hiểm nhất - đó là sự mài mòn.
    Liệu có ai mà không biết đến tác phẩm đồ sộ ?oAnh công nhân và chị nông trang viên? của V. I. Mukhina? Tượng đài hùng vĩ này được làm bằng thép không gỉ chứa 18 % crom và 10 % niken. Năm 1937, nó đã trang điểm cho gian hàng của Liên Xô tại triển lãm quốc tế ở Pari và hiện nay đang đứng sừng sững ở lối vào khu triển lãm ?oNhững thành tựu của nền kinh tế quốc dân? ở Maxcơva. Tuy nhiên, cacbon lại có hại đối với thép không gỉ: khuynh hướng tạo thành cacbua của crom đã khiến cho phần lớn lượng nguyên tố này liên kết với cacbon và tách ra ở những chỗ ranh giới các hạt thép, còn chính các hạt thép thì lại nghèo crom và không đủ để chống lại sự tấn công của các axit và của oxi. Vì vậy, hàm lượng cacbon trong thép không gỉ phải rất ít (không quá 0,1%).
    Các nhà luyện kim Nhật Bản đã chế tạo một loại thép đặc biệt có pha thêm crom và nhôm: nó cách âm tốt gấp hàng trăm lần so với thép kết cấu thông thường. Khung cửa sổ và cửa ra vào làm bằng loại thép ?oyên tĩnh? này hoàn toàn không gây ra tiếng ồn ngay cả khi người ta ráng hết sức để nện vào chúng. Một lá thép loại này khi rơi xuống sàn ximăng thì không phát ra một tiếng kêu nào. Các nhà chế tạo máy mà hàng ngày buộc phải nghe các buổi ?ohòa tấu? của các loại ?onhạc cụ gõ đập? trong các xưởng máy đều đánh giá đúng ưu điểm của thứ vật liệu mới này.
    Ở nhiệt độ cao, thép có thể bị bao phủ bởi một lớp ?ovảy? gỉ. Trong một số máy móc, các chi tiết bị đốt nóng đến hàng trăm độ. Muốn cho thép dùng để chế tạo các chi tiết này không bị vảy gỉ bao phủ, người ta pha thêm vào đó 20 - 30 % crom. Loại thép như vậy chịu đựng được nhiệt độ đến 1000 độ C!
    Các hợp kim của niken và crom - gọi là nicrom - dùng để chế tạo các phần tử đốt nóng rất tốt: chúng có điện trở rất cao, vì vậy, khi có dòng điện đi qua thì sẽ được nung rất nóng. Thêm coban và nhôm vào các hợp kim crom - niken thì các hợp kim này sẽ có khả năng chịu được tải trọng lớn ở nhiệt độ 650 - 900 độ C; các chi tiết, như cánh quạt của tuabin khí chẳng hạn, được chế tạo bằng loại hợp kim chịu nóng như vậy. Crom còn có mặt trong nhiều loại hợp kim khác mà ta có thể nhận thấy qua tên gọi của chúng: cromen, croman, cromansi. Hợp kim comocrom (gồm coban, molipđen và crom) không độc hại đối với cơ thể người, vì vậy, nó được sử dụng trong khoa phẫu thuật phục hồi. Để làm răng giả, người ta dùng loại hợp kim gồm coban và crom: loại hợp kim này rẻ hơn vàng nhiều lần, đồng thời lại có độ dẫn nhiệt nhỏ, nên người mang bộ răng giả như vậy có thể uống nước chè nóng hoặc ăn kem một cách ngon lành mà không cảm thấy khó chịu.
    Ngày nay, phần lớn quặng crom khai thác được trên thế giới đều đi đến các nhà máy sản xuất hợp kim sắt, ở đó người ta nấu luyện các loại ferocrom và crom kim loại. Năm 1820, lần đầu tiên người ta chế tạo được ferocrom bằng cách dùng than gỗ để khử hỗn hợp các oxit của sắt và crom trong nồi nung. Năm 1854 đã thu được crom kim loại nguyên chất bằng cách điện phân các dung dịch nước của crom clorua. Cũng trong thời gian này đã xuất hiện ý đồ nấu luyện ferocrom chứa cacbon trong lò cao. Năm 1865 đã cấp bằng phát minh đầu tiên về thép crom. Nhu cầu về ferocrom bắt đầu tăng vọt.
    Welcome to Clb Hoá học
  2. Cuong_MA

    Cuong_MA Thành viên quen thuộc

    Tham gia ngày:
    29/07/2002
    Bài viết:
    221
    Đã được thích:
    0
    Cảm động quá. Cám ơn các bác đã vất vả mang lại tri thức cho anh em. Đề nghị bỏ phiếu cho các bác.
    Không thể hiểu những gì không thể ... hiểu
  3. T_N_T

    T_N_T Thành viên tích cực

    Tham gia ngày:
    26/07/2002
    Bài viết:
    694
    Đã được thích:
    1
    Kể chuyện về kim loại (phần 25)
    Bằng phát minh đầu tiên - Nhịp độ của rùa -Cuộc đối thoại lý thú - "Rượu thập cẩm" bằng kim loại - Giày bằng crom - Các vị thần chảy máu - Lối thoát khỏi tình thế - Chuyên nghề mới.
    Dòng điện, hay nói chính xác hơn là phương pháp điều chế các kim loại và hợp kim bằng nhiệt điện đã đóng vai trò quan trọng trong việc phát triển ngành sản xuất ferocrom. Năm 1893, nhà bác học Pháp Muatxan đã luyện được ferocrom chứa cacbon (gồm 60% crom và 6% cacbon) trong lò điện.
    Ở nước Nga trước cách mạng, ngành sản xuất hợp kim sắt phát triển với tốc độ ?ochậm như rùa?. Lò cao của các nhà máy ở miền nam chỉ luyện được ferosilic và feromangan với số lượng rất ít ỏi. Năm 1910, trên bờ sông Xatca (nam Uran), nhà máy luyện kim bằng điện cỡ nhỏ ?oPorogi? đã được xây dựng và bắt đầu sản xuất ferocrom, sau đó sản xuất cả ferosilic. Nhưng không thể nói đến việc thỏa mãn các nhu cầu của nền công nghiệp nước nhà: để đáp ứng nhu cầu của nước Nga về các hợp kim sắt, hầu như phải hoàn toàn nhập cảng chúng từ các nước.
    Nhà nước Xô - viết trẻ tuổi không thể lệ thuộc vào các nước tư bản chủ nghĩa về một lĩnh vực tối quan trọng như ngành sản xuất các loại thép chất lượng cao - ngành tiêu thụ chủ yếu các hợp kim sắt. Để thực hiện được kế hoạch to lớn nhằm công nghiệp hóa đất nước thì cần phải có thép kết cấu, thép dụng cụ, thép không gỉ, thép làm bi, thép làm ô tô máy kéo. Crom là một trong những thành phần quan trọng nhất của các loại thép này.
    Ngay trong những năm 1927 - 1928, Liên Xô đã bắt đầu thiết kế và xây dựng các nhà máy sản xuất hợp kim sắt. Năm 1931, nhà máy hợp kim sắt ở Tseliabinxcơ đã đi vào hoạt động và trở thành đứa con đầu lòng của ngành công nghiệp hợp kim sắt trong nước. Trong những năm đó, một trong những người xây dựng nên ngành luyện kim chất lượng cao của Liên Xô - viện sĩ thông tấn Viện hàm lâm khoa học Liên Xô V. X. Emelianop đang ở Đức, nơi ông được cử đến để nghiên cứu kinh nghiệm của các chuyên gia nước ngoài.
    Trong hồi ký, ông đã kể lại câu chuyện thú vị của mình với một nhà luyện kim Đức :
      ?oNăm 1933, tại một nhà máy nhỏ của Đức, tôi đã hỏi ông kỹ sư trưởng :
    - Các ông bán ferocrom do nhà máy này sản xuất cho ai?
    Ông ta liền kể :
    - Khoảng năm phần trăm tổng sản lượng, chúng tôi cung cấp cho các nhà máy hóa chất gần đây; nhà máy của Becker mua của chúng tôi hai phần trăm, gần ba phần trăm thì...
    Ngắt lời ông ta, tôi hỏi :
    - Thế Liên Xô mua của các ông có nhiều không ?
    - Liên Xô thì lúc nào cũng vậy. Chúng tôi gửi đến các nhà máy của các ông chừng bảy mươi lăm đến tám mươi phần trăm sản lượng của chúng tôi. Còn chúng tôi thì đang nấu luyện bằng quặng crom Uran?.
    Đúng, lúc bấy giờ, Liên Xô không những xuất khẩu quặng sang Đức mà còn sang cả Thụy Điển, Italia, Mỹ, rồi lại phải mua ferocrom của các nước đó. Nhưng khi hai nhà máy hợp kim sắt nữa được xây dựng (ở Zaporoje và ở Zextafoni) vào năm 1933 tiếp theo nhà máy ở Tseliabinxcơ, thì Liên Xô không những đã ngừng nhập khẩu các loại hợp kim sắt quan trọng nhất, trong đó có cả ferocrom, mà còn có khả năng xuất khẩu các hợp kim đó sang các nước. Ngành luyện kim chất lượng cao đã thực sự cung cấp đầy đủ các loại vật liệu cần thiết cho nền sản xuất trong nước.
    Năm 1963, tại vùng Actiubinxcơ thuộc Kazăcxtan đã tìm thấy những thân quặng cromit rất lớn - đó là nguyên liệu chủ yếu để sản xuất ferocrom. Trong những năm chiến tranh, nhà máy hợp kim sắt Actiubinxcơ đã được xây dựng trên cơ sở những mỏ này, và về sau, nó đã trở thành xí nghiệp lớn nhất sản xuất crom và ferocrom đủ các nhãn hiệu.
    Vùng Uran rất giàu quặng crom: không phải ngẫu nhiên mà chính tại đây đã tìm thấy khoáng vật mà từ đó Voclanh khám phá ra crom. Nhiều nước khác cũng có những mỏ kim loại này. Trong thời gian mà chiếc xe tự hành ?oLunakhôt? của Liên Xô ?odu ngoạn? trên mặt trăng, các khí cụ của nó đã xác định rằng, ở vùng biển Mưa cũng có crom. Nhưng nếu đến biển Mưa khá xa, thì đến biển Đỏ, có thể nói, chỉ cần ?ovới tay? là tới. Tại đây, cách bờ biển Sudan không xa, các nhà bác học Pháp đã phát hiện được một cái hố độc đáo, sâu tới 2.200 mét, còn nước ở độ sâu này thì rất nóng. Các nhà khảo sát đã dùng quả cầu đo sâu để lặn xuống vực này, nhưng ngay sau đó họ đành phải ngoi lên vì thành của quả cầu nhanh chóng bị ?ohâm nóng? đến 43 độ C. Những mẫu nước lấy được ở độ sâu này đã cho biết rằng, ?ohố? này gần như chứa đầy một thứ quặng lỏng và nóng: hàm lượng crom, sắt, vàng, mangan và nhiều kim loại khác đạt đến mức cao khác thường. Trong những năm sắp tới, rất có thể các chuyên gia sẽ khai thác được những thứ ?orượu thập cẩm? gồm các kim loại này.
    Cromit cũng được sử dụng rộng rãi trong công nghiệp vật kiệu chịu lửa. Gạch magezitcromit - loại vật liệu chịu lửa tuyệt vời được dùng để xây lớp lót lò Mactanh và các thiết bị luyện kim khác. Vật liệu này có tính chịu nhiệt cao và không sợ sự thay đổi nhiệt độ đột ngột nhiều lần.
    Các nhà hóa học sử dụng cromit vào việc điều chế kali bicromat và natri bicromat, cũng như các loại phèn crom để thuộc da, làm cho da bóng đẹp và bền. Da như thế được gọi là da crom, còn ủng làm bằng da ấy thì gọi là ủng da crom.
    Đêm đêm, các ngôi sao hồng ngọc của điện Cremli tỏa sáng trên bầu trời Maxcơva. Trong thế giới của các loại đá quý, hồng ngọc đứng [​IMG]hàng thứ hai sau kim cương. Theo truyền thuyết Ấn Độ cổ đại thì hồng ngọc được tạo nên từ những giọt máu do các vị thần rỏ xuống: ?oNhững giọt máu nặng rơi xuống lòng sông, tận những chỗ nước sâu để phản chiếu những cây cọ tuyệt đẹp. Rồi từ đó, con sông được mang tên Ravanaganga, và từ bấy giờ, sau khi biến thành hồng ngọc, những giọt máu này bừng sáng lên mỗi khi màn đêm buông xuống, với ngọn lửa thần kỳ rực sáng bên trong, rồi những tia lửa này xuyên qua dòng nước...?. Huyền thoại phương đông cổ đại kể về sự tích của hồng ngọc như vậy đấy. Ngày nay, công nghệ sản xuất loại ngọc đỏ kỳ diệu này đã trở nên đơn giản hơn nhiều, và các vị thần không phải rót máu linh thiêng của mình nữa: để làm ra ngọc đỏ này, người ta pha crom oxit với một liều lượng nhất định vào nhôm oxit, nhờ vậy mà những tinh thể hồng ngọc có màu sắc kỳ diệu. Tuy nhiên, hồng ngọc nhân tạo sở dĩ được quý chuộng không phải chỉ do màu sắc bên ngoài tuyệt đẹp: tia laze sinh ra nhờ sự giúp đỡ của hồng ngọc quả là có năng lực tạo nên những phép lạ. Tựa như những tia sáng thần kỳ do chiếc gương hyperboloit của kỹ sư Garin và trí tượng tượng phong phú của Alecxây Tonxtôi tạo ra, tia laze có thể cắt mọi thứ kim loại một cách dễ dàng như thể chiếc kéo cắt giấy vậy, hoặc có thể chọc những lỗ rất nhỏ xuyên qua kim cương, corunđum và các thứ ?ohạt hồ đào? rắn chắc khác mà không hề e ngại trước độ cứng ?onổi tiếng toàn thế giới? của chúng.
    Crom oxit giúp các nhà chế tạo máy kéo rút ngắn được rất nhiều thời gian chạy rà động cơ. Thông thường, công đoạn này (để cho các chi tiết cọ xát với nhau có dịp ?olàm quen? nhau) kéo dài khá lâu, điều đó dĩ nhiên là không làm cho những người sản xuất máy kéo được hài lòng lắm. Nhưng người ta đã tìm được cách thoát khỏi tình trạng đó sau khi điều chế được một chất pha nhiên liệu mới có chứa crom oxit. Bí quyết tác dụng của chất pha này rất đơn giản: khi đốt cháy nhiên liệu sẽ tạo nên những hạt crom oxit rất nhỏ có tính mài mòn cao, chúng đọng lại trên thành trong của xilanh và trên các bề mặt chịu ma sát nên sẽ nhanh chóng mài nhẵn các chi tiết, làm cho chúng vừa khít với nhau. Kết hợp với loại chất bôi trơn mới, chất pha này cho phép giảm thời gian chạy rà được 30 lần.
    Cách đây chưa lâu lắm, crom oxit đã có thêm một nghề mới rất thú vị: dùng để sản xuất băng ghi âm. Lớp làm việc của băng ghi âm không chứa sắt oxit như vẫn thường thấy mà chứa crom oxit. Sự thay thế như vậy đã đem lại kết quả rất tốt: mật độ ghi tăng lên, chất lượng âm thanh tốt hơn và băng làm việc đáng tin cậy hơn. Sản phẩm mới này đã được ưu tiên ?ođăng ký cư trú? trong các bộ nhớ của máy tính điện tử.
  4. T_N_T

    T_N_T Thành viên tích cực

    Tham gia ngày:
    26/07/2002
    Bài viết:
    694
    Đã được thích:
    1
    Kể chuyện về kim loại (phần 26)
    Khỏi phải cạnh tranh - Những khó khăn bất ngờ - "Tôi tiếp nhận hỏa pháo" - Vỏ bọc cho kim cương - Những con tính số học - "Người Anh hiểu rất rõ..."
    Các vật liệu làm ảnh và dược phẩm, các chất xúc tác dùng cho các quá trình hóa học và các lớp mạ kim loại - đâu đâu crom cũng tỏ ra rất được việc. Có lẽ cần phải kể tỉ mỉ hơn về các lớp mạ crom.
    Từ lâu người ta đã nhận thấy rằng, crom không những có độ cứng cao (về mặt này thì không có kim loại nào cạnh tranh nổi), mà còn chống lại được sự oxi hóa trong không khí và không tương tác với các axit. Dùng phương pháp điện phân, người ta đã thử mạ một lớp mỏng kim loại này lên bề mặt các sản phẩm làm bằng các thứ vật liệu khác để giữ cho chúng khỏi bị ăn mòn, khỏi bị xây xát, cũng như những ?ochấn thương? khác. Tuy nhiên, lớp mạ crom tỏ ra rất xốp, dễ bong ra và không đáp ứng được những hy vọng mà mọi người mong đợi. Trong suốt gần ba phần tư thế kỷ, các nhà bác học đã ?ođau đầu? về vấn đề mạ crom và mãi đến những năm 20 của thế kỷ này, họ mới giải quyết được. Sở dĩ thất bại là do chất điện phân được sử dụng ở đây chứa crom hóa trị ba là thứ crom không thể tạo nên chất mạ có chất lượng cần thiết. Còn ?ongười anh em? hóa trị sáu của nó thì lại đảm đương nổi nhiệm vụ này. Kể từ đó, người ta bắt đầu sự dụng axit cromic (trong đó, crom có hóa trị sáu) làm chất điện phân. Bề dày của các lớp mạ có thể đạt đến 1 milimet (chẳng hạn, trên một số chi tiết bên ngoài của ô tô, mô tô, xe đạp). Song cũng có khi lớp mạ crom được sử dụng vào mục đích trang trí: để mạ đồng hồ, tay nắm cửa và các đồ vật khác không nằm trong vùng nguy hiểm. Trong những trường hợp như vậy, chỉ cần mạ những lớp crom cực mỏng (0,0002 - 0,0005 milimet).
    Các nhà hóa học Litva đã đề xuất phương pháp tạo nên bộ ?oáo giáp? nhiều lớp cho các chi tiết quan trọng đặc biệt. Lớp ngoài cùng mỏng nhất của ?oáo giáp? này là crom (dưới kính hiển vi, bề mặt của tầng mạ này quả thật hao hao giống áo giáp): trong quá trình làm việc, đây là lớp đầu tiên tiếp xúc với lửa, nhưng phải qua nhiều năm, crom mới bị oxi hóa. Trong thời gian ấy, chi tiết đó cứ việc gánh vác công việc hệ trọng của mình.
    Cho đến gần đây, người ta mới chỉ mạ crom cho các chi tiết kim loại. Nhưng hiện nay, các nhà bác học đã biết cách tạo nên lớp vỏ crom ngay cả trên các sản phẩm bằng chất dẻo. Polistirolen - một loại chất dẻo rất quen thuộc và đã kinh qua nhiều thử thách, nếu được mạ crom thì sẽ bền vững hơn và không sợ những kẻ thù muôn thủa của các vật liệu kết cấu như sự mài mòn, sự uốn và sự va đập. Lẽ đương nhiên, thời hạn sử dụng các chi tiết làm bằng vật liệu này sẽ tăng lên.
    Lớp vỏ crom thậm chí còn có ích cho loại vật liệu mẫu mực về độ cứng là kim cương. Sở dĩ như vậy là vì không phải tất cả kim cương khai thác được đều có thể dùng để chế tạo dụng cụ cắt gọt: thông thường, kim cương thiên nhiên có rất nhiều vết nứt cực nhỏ làm cho nó không thể dùng để gắn lên dụng cụ cắt gọt hoặc mũi khoan, vì thứ dụng cụ như vậy hễ chạm vào kim loại hoặc đá cứng thì kim cương liền vỡ ra từng mảnh nhỏ. Ngoài ra, các tinh thể kim cương thiên nhiên thường không bám chặt vào thân dụng cụ cắt gọt. Để khắc phục nhược điểm này, các nhà bác học đã đề nghị bọc kim cương bằng một màng crom mỏng vừa bám chắc vào với kim cương vừa bám chắc vào với chỗ gắn bằng đồng.
    Kim cương được bọc bằng crom đã trải qua nhiều cuộc thử nghiệm. Vậy kết quả ra sao? Kim cương bám chặt vào dụng cụ cắt gọt, còn thời hạn sử dụng của một tinh thể thì tăng lên vài lần. Khi xem xét một tinh thể như vậy dưới kính hiển vi thì ở một mặt, người ta đã tìm thấy một kẽ nứt khá sâu đã được gắn lại bằng lớp màng crom bao bọc kim cương. Hóa ra là sau khi kết hợp với các nguyên tử cacbon của kim cương, các nguyên tử crom đã tạo ra những nguyên tử crom cacbua cứng trên bề mặt kim cương, ngoài ra, crom còn xâm nhập vào kẽ nứt có thành cũng được bao phủ bằng một lớp crom cacbua. Còn lớp crom nguyên chất sát với chỗ gắn thì tạo thành hợp kim với đồng, nhờ vậy nên kim cương được gắn chắc với dụng cụ cắt gọt. Tóm lại, nhờ có crom mà cùng một lúc giải quyết được hai việc: dụng cụ cắt gọt trở nên bền hơn, còn kim cương thì trở nên bền hơn ... kim cương.
    Năm 1974, các nhà khoa học của Viện liên hợp nghiên cứu hạt nhân tại Đupna đã thu được một đồng vị của nguyên tố siêu urani có số thứ tự là 106. Phản ứng tổng hợp hạt nhân có kết quả mỹ mãn này đã diễn ra nhờ sự bắn phá mục tiêu chì bằng những ion crom cao tốc. Chì thì đã nhiều lần được dùng làm mục tiêu trong các cuộc bắn phá tương tự, còn crom thì được chọn theo những tính toán số học đơn thuần: 24 proton của hạt nhân nguyên tử crom cộng với 82 proton của hạt nhân nguyên tử chì sẽ tạo thành con số 106 cần thiết khi các hạt nhân này hòa nhập vào nhau. Mặc dầu đồng vị của nguyên tố này chỉ sống vẻn vẹn vài phần ngàn giây, nhưng các khí cụ rất nhạy đã ghi nhận được sự ra đời của một nguyên tố siêu urani mới.
    ...Trước khi kết thúc câu chuyện về crom, chúng ta hãy trở lại với hồi ký của V. X. Emelianôp. Năm 1967, ông đã viết: ?oHai năm trước đây, tôi được biết một tin khiến tôi xúc động sâu sắc, nhưng tiếc thay, ở nước ta, tin đó không được ai chú ý đến. Chúng ta đã bán một mẻ ferocrom cho nước Anh - một nước mà đối với chúng ta, luôn luôn là biểu tượng của sự tiến bộ kỹ thuật. Vậy mà bây giờ nước Anh lại mua ferocrom của chúng ta! Người Anh hiểu rõ cái mà họ mua?.
    (còn nữa)
  5. vmdmanowar

    vmdmanowar Thành viên mới

    Tham gia ngày:
    22/03/2003
    Bài viết:
    652
    Đã được thích:
    0
    Kể chuyện về kim loại (phần 27)
    Những cột trụ của một cung điện ngầm - Thứ bột đen kỳ diệu - ?oXà phòng cho thủy tinh? - Han hay Caim? - Selơ chạy tiếp sức - ?oHỏa ngục? làm công việc của mình - Sự thiếu hụt các thiên thể.
    Bạn đường muôn thủa của sắt
    Mn
    Nếu bạn đã đi tàu điện ngầm Maxcơva thì hẳn phải chú ý đến một trong những ga đẹp nhất của nó - ga Maiacôpxki. Các cột trụ của cung điện ngầm này được trang điểm những đường viền thanh tú bằng hồng thạch (rođonit) - một khoáng vật chứa mangan. Màu hồng dịu dàng (rođon theo tiếng Hy Lạp có nghĩa là hoa hồng) và tính dễ gia công đã làm cho loại đá này trở thành vật liệu trang trí và ốp tường tuyệt đẹp. Những sản phẩm bằng hồng thạch đang được cất giữ tại Bảo tàng Ermitagiơ, trong đại giáo đường Petropaplôpxcơ và nhiều nhà bảo tàng khác ở Liên Xô. Ở Uran có rất nhiều vỉa hồng thạch rất lớn, và người ta đã tìm thấy một tảng nặng 47 tấn. Không có một nơi nào khác trên trái đất có những khối hồng thạch lớn như ở Uran. Quả là hồng thạch của Uran có vẻ đẹp mà không loại đá nào sánh kịp.
    Tuy thế, khoáng vật công nghiệp chủ yếu chứa mangan lại không phải là hồng thạch, mà là huyền thạch (piroluzit) - đó là mangan oxit. Từ thời xa xưa, con người đã biết đến thứ khoáng vật màu đen này.
    Ngay từ thế kỷ I, Plini Bố - nhà viết sử kiêm nhà vạn vật học La Mã cổ đại (đã tử nạn trong trận phun trào của núi lửa Vezuvi năm 79 sau công nguyên) đã nói đến khả năng kỳ diệu của thứ bột đen (piroluzit nghiền nhỏ) làm cho thủy tinh trở nên trong suốt. Về sau, thời trung cổ, nhà bác học kiêm kỹ sư người Italia là Vannocho Biringucho (Vannuccio Biriguccio) (1480 - 1539) đã viết trong tác phẩm bách khoa của mình về ngành mỏ và luyện kim nhan đề ?oHỏa thuật học?, xuất bản năm 1540: ?o... piroluzit có màu nâu thẫm;... nếu thêm vào nó những chất có dạng thủy tinh thì nó nhuộm các chất này thành màu tím rất đẹp. Những người nấu thủy tinh lão luyện đã dùng nó để nhuộm thủy tinh thành màu tím đẹp tuyệt trần: những người thợ gốm lành nghề cũng dùng nó để vẽ lên những đường vân hoa tím trên bát đĩa. Ngoài ra, piroluzit còn có một tính chất đặc biệt: khi nấu chảy với thủy tinh lỏng, nó làm cho thủy tinh trong sạch và biến từ màu lục hoặc màu vàng thành màu trắng?.
    Mãi về sau, tên gọi ?opiroluzit? mới được đặt cho khoáng vật này, còn ở thời bấy giờ, vì nó có khả năng làm cho thủy tinh mất màu, nên người ta gọi nó là ?oxà phòng cho thủy tinh? hay ?omangan? ( theo tiếng Hy Lạp ?omanganese? nghĩa là làm sạch). Nó còn có một tên khác nữa là ?omagezi đen?, bởi vì, từ thời cổ xưa, người ta khai thác piroluzit ở tiểu Á, gần thành phố Mangnesia; xin nói thêm rằng ?omagezi trắng? hoặc ?omagezi anba? tức là magie oxit, cũng được khai thác ở đó.
    Lịch sử hóa học đã coi nhà hóa học Thụy Điển Iuhan Gotlip Han (Juhan Gotlib Gahn) là người phát hiện ra mangan với tư cách là một kim loại (năm 1774). Tuy nhiên, có cơ sở để cho rằng, Ignati Gotfrit Caim (Ignatius Gotfrid Kaim) - người đã từng mô tả mangan trong bản luận văn của mình xuất bản ở Viên vào năm 1770, là người đầu tiên nhận được những hạt mangan kim loại. Caim đã không tiến hành các cuộc khảo cứu đến cùng, vì thế mà đa số các nhà hóa học thời đó không biết đến các công trình này của ông. Mặc dầu vậy, trong một cuốn từ điển hóa học, phát minh của Caim đã được nhắc đến: ?oKhi đốt nóng những hỗn hợp gồm một phần piroluzit dạng bột và hai phần một chất trợ dung màu đen, Caim đã thu nhận được một thứ kim loại giòn có màu trắng xanh ở dạng tinh thể với vô số các mặt lấp lánh có hình dạng khác nhau, mà mặt gãy của nó thì óng ánh đủ mọi màu từ xanh đến vàng?.
    Nhà bác học Thụy Điển Torbern Bergman đã làm những thí nghiệm tiếp theo để tìm hiểu về mangan. Ông viết: ?o Khoáng vật mà người ta gọi là magezi đen là một thứ đất mới, không nên nhầm lẫn với vôi nung, cũng không nên lẫn lộn với magezi anba?. Nhưng ông cũng không tách được mangan ra khỏi piroluzit.
    Carl Vinhem Selơ (Karl Wilhelm Scheele) - một nhà hóa học Thụy Điển nổi tiếng, bạn của Bergman, đã tiếp tục nghiên cứu khoáng vật này. Đầu năm 1774, ông đã trình bày trước Viện hàn lâm khoa học Thụy Điển một bản báo cáo về piroluzit và các tính chất của nó, trong đó ông đã thông báo về việc ông phát hiện ra khí clo. Selơ đã khẳng định rằng, trong thành phần của piroluzit còn có một nguyên tố nữa, khác hẳn với các nguyên tố người ta đã biết thời bấy giờ. Nhưng ông cũng không thu được nguyên tố này.
    Việc mà Bergman và Selơ không thể làm được thì Han đã hoàn thành. Tháng 5 năm 1774, Selơ đã gửi cho Han một ít piroluzit đã tinh lọc cùng với mấy dòng chữ như sau: ?o Tôi nóng lòng mong đợi tin tức về việc piroluzit thuần khiết này sẽ dẫn đến kết quả gì sau khi anh cho nó vào ?ohỏa ngục? của mình, và tôi hy vọng rằng, anh sẽ gửi cho tôi một hạt kim loại nhỏ càng nhanh càng tốt?.
    Han vốn nổi tiếng giữa các nhà hóa học với tư cách một nhà thực nghiệm điêu luyện, nhất là khi công việc liên quan đến các thí nghiệm về luyện kim. Trong chiếc nồi nung mà thành bên trong của nó được phủ một lớp bụi ướt, ông bỏ vào một hỗn hợp gồm piroluzit tán nhỏ và dầu, còn bên trên thì phủ bột than gỗ. Bây giờ đến lượt ?ohỏa ngục? ra tay. Sau khi nung rất nóng hỗn hợp này một giờ thì phát hiện được một hạt trong nồi nung. Chính hạt này đã làm cho Han nổi danh trên thế giới, còn gia đình các kim loại thì có thêm một thành viên mới - đó là mangan.
    Tuy nhiên, nguyên tố này không được xếp vào hàng các kim loại ngay. Sở dĩ như vậy là vì hồi cuối thế kỷ XVIII vẫn còn văng vẳng dư âm những quan niệm cổ xưa của các nhà giả kim thuật, mà thực chất của chúng chung quy lại là một định đề rõ ràng và ngắn gọn: ?oCó bảy kim loại tạo nên thế giới, ứng với bảy hành tinh?. Hồi đó, số kim loại mà con người biết đến cũng bằng đúng bảy thiên thể ?ođang hoạt động? (mặt trời, mặt trăng, và năm hành tinh không kể trái đất). Hẳn là mọi việc sẽ rất tốt đẹp nếu như không có thêm kim loại nào nữa; còn nếu xuất hiện những hành tinh mới thì mọi việc sẽ tồi tệ hơn hẳn (mãi đến năm 1781 mới phát hiện ra hành tinh tiếp theo của hệ mặt trời). Để cho lý thuyết hoàn chỉnh ấy không bị méo mó do sự thiếu hụt các thiên thể, một loạt nguyên tố mới được khám phá có ?orắp tâm? giành vai trò kim loại đã bị liệt vào hàng ?onửa kim loại?.
    Thuật ngữ này đã được lưu lại trong khoa học cả sau này nữa, khi mà người ta đã biết rõ rằng, thiên văn học và hóa học không bị ràng buộc với nhau bởi những mối dây bền chặt đến mức như các nhà giả kim thuật đã nghĩ. Trong một thời gian dài, nhiều nhà bác học đã dùng thuật ngữ ?onửa kim loại? để gọi những chất có mật độ, màu sắc và vẻ bề ngoài tỏ ra giống kim loại, nhưng không có tính dẻo cao là thuộc tính vốn có ở vàng, bạc, đồng, sắt, chì, thiếc - những nguyên tố mà ?othành danh? kim loại của chúng là điều không còn phải nghi ngờ gì nữa. Chẳng hạn, người ta đã liệt thủy ngân, antimon, bitmut, kẽm, coban vào hàng ?onửa kim loại?. Một trong những nguyên tố cuối cùng không được liệt vào hàng kim loại là mangan. Thế là cuối tháng 6 năm 1774, tức là chẳng bao lâu sau khi khám phá ra nguyên tố này, Selơ đã gửi cho Han một bức thư, trong đó ông cảm ơn Han đã gửi cho hạt mangan và chia sẻ ý nghĩ của mình: ?o...tôi cho rằng cái viên mà anh thu được từ piroluzit là một thứ nửa kim loại khác hẳn với các nửa kim loại đã biết từ trước và có mối quan hệ gần gũi với sắt?. Nhưng dần dần, các nhà hóa học đã từ bỏ cái thuật ngữ khá mơ hồ ấy, và mangan xứng đáng được chiếm giữ một vị trí trong dãy các kim loại.
    Hãy thử phá cái tủ sắt - Có triệu tập nổi một cuộc họp khóm phố không? - Hợp kim "hai mặt".
    Ở nước Nga trong mấy chục năm đầu thế kỷ XIX, người ta đã bắt đầu thu được mangan dưới dạng hợp kim với sắt, tức là feromangan. Năm 1825, ?oTạp chí mỏ? đã nói đến việc sử dụng mangan để luyện thép. Kể từ lúc đó, số phận của nguyên tố này gắn bó chặt chẽ với ngành luyện kim là ngành mà hiện nay tiêu thụ chủ yếu quặng mangan.
    Trong tác phẩm nổi tiếng ?oBàn về thép bulat? (thép bulat là loại thép cacbon có cấu trúc đặc biệt, có vân hoa trên bề mặt, có độ cứng và độ đàn hồi cao, dùng để làm bảo kiếm rất sắc. Ở Tây Âu, người ta gọi là thép Đamat (Damascus steel, hoặc acier đe Damas) vì nó được dùng ở Xyri rất sớm (N.D.)) xuất bản năm 1841, nhà luyện kim lỗi lạc người Nga là P.P. Anoxôp đã mô tả các loại thép có hàm lượng mangan khác nhau. Để đưa mangan vào thép, Anoxôp đã dùng feromangan mà ông thu được trong nồi nung. Từ năm 1876, các lò cao tại vùng hạ lưu sông Taghin đã bắt đầu nấu luyện feromangan theo phương thức công nghiệp.
    Năm1882 đã trở thành một cái mốc trong lịch sử của mangan, khi mà nhà luyện kim người Anh tên là Rôbe Hatfin (Robert Hadfield) nấu luyện thép với hàm lượng mangan cao (gần 13%). Từ năm 1878 Hatfin đã bắt tay vào nghiên cứu các hợp kim của sắt với các nguyên tố khác, đặc biệt là với mangan. Sau đó bốn năm, nhà luyện kim trẻ tuổi của xứ Sepfin này đã ghi trong nhật ký của mình như sau: ?o Tôi đã bắt đầu những thí nghiệm này vì quan tâm đến việc sản xuất một loại thép vừa cứng, đồng thời lại vừa dai. Các thí nghiệm đã dẫn đến một kết quả đáng chú ý, rất quan trọng và đủ sức làm thay đổi các quan điểm hiện hành của các nhà luyện kim đối với các hợp kim của sắt?.
    Năm 1883, Hatfin đã được cấp bằng phát minh đầu tiên của nước Anh về thép mangan sản xuất bằng cách pha feromangan giàu mangan vào sắt. Trong những năm tiếp theo, Hatfin tiếp tục nghiên cứu những vấn đề liên quan với thép mangan. Năm 1883, các tác phẩm của ông ?oBàn về mangan và việc sử dụng nó trong ngành luyện kim?, ?oBàn về một số tính chất mới phát hiện được của sắt và mangan? và ?obàn về thép mangan? đã ra đời. Các công trình nghiên cứu này đã cho biết rằng, nếu được tôi trong nước thì loại thép mangan này có thêm những tính chất mới, rất bổ ích. Hatfin còn nhận được hàng loạt bằng phát minh nữa liên quan với việc nhiệt luyện thép mangan, và đến năm 1901 thì ông được trao bằng phát minh về kết cấu của lò dùng để nung thép mangan trước khi tôi,
    Thép của Hatfin đã nhanh chóng được các nhà luyện kim và các nhà chế tạo máy thừa nhận. Nhờ có tính chịu mòn cao nên người ta đã bắt đầu sử dụng nó để chế tạo các chi tiết bị mài mòn dưới áp lực riêng khá lớn trong quá trình vận hành, như ghi ghép ray, hàm máy nghiền, bi trong các máy nghiền bi, mắt xích v. v... Điều đáng ngạc nhiên hơn cả là dưới tác động của tải trọng, thép này càng ngày càng cứng thêm. Nguyên nhân của hiện tượng kỳ lạ này như sau. Sau khi đúc, lượng cacbua dư thừa trong thép mangan (lượng cacbua này làm giảm độ bền của thép) sẽ phân tán ở ranh giới các hạt. Vì vậy, thép phải được tôi để cho các phần tử cacbua ở ranh giới các hạt hòa tan trong kim loại. Khi các chi tiết máy làm việc, do sự biến cứng nguội (dưới tác động của tải trọng), cacbon tách ra ở lớp bề mặt - đó chính là lý do khiến độ cứng của thép tăng lên. Không lấy gì làm lạ khi các hãng chuyên sản xuất tủ sắt và khóa rất ưa chuộng thép của Hatfin.
    Gang mangan cũng có tính chất tự tăng độ bền. Chẳng hạn, những máy xúc được lắp các ổ trục làm bằng thứ gang đó có thể làm việc liên tục không phải sửa chữa trong thời gian dài gấp đôi so với những máy xúc cũng như vậy nhưng được lắp các ổ trục bằng đồng đỏ.
    Trong ngành luyện kim, mangan được sử dụng rộng rãi để khử oxi và khử lưu huỳnh cho thép. Với vai trò nguyên tố điều chất, nó có mặt trong thép làm lò xo, thép làm ống dẫn dầu mỏ và khí đốt, thép không nhiễm từ. Cũng chẳng cần phải liệt kê hết các loại thép chứa mangan, bởi vì nguyên tố do Han phát hiện ra, dù nhiều hoặc ít, hầu như có mặt trong tất cả các loại thép và gang. Không phải ngẫu nhiên mà người ta gọi chính nó là bạn đường muôn thủa của sắt. Mà đúng là trong hệ thống tuần hoàn các nguyên tố, chúng chiếm các ô kề nhau số 25 và số 26 (thậm chí, mangan cùng với sắt còn xông cả vào ... răng cá mập, nhưng chuyện đó sẽ nói ở đoạn sau)
    Năm 1917, sau khi các nhà bác học Nga X. F. Giemchugiơnưi và V. K. Petrasevich phát hiện ra rằng, chỉ một lượng nhỏ đồng (gần 3,5%) cũng đủ làm cho mangan có tính dẻo, các nhà luyện kim bắt đầu quan tâm đến các hợp kim mangan.
    Trong kỹ thuật hiện đại, người ta đã sử dụng nhiều loại manganin - đó là hợp kim mangan, đồng và niken có điện trở cao mà trên thực tế coi như không phụ thuộc vào nhiệt độ. Nguyên lý làm việc của các áp kế điện dựa trên khả năng thay đổi điện trở của manganin tùy theo áp suất mà hợp kim phải chịu đựng. Trong trường hợp phải đo áp suất, chẳng hạn, đến vài chục ngàn atmôtfe, thì không thể sử dụng các áp kế thông thường được, bởi vì dưới áp suất lớn như vậy, chất lỏng hoặc chất khí sẽ nổ tung qua thành ống áp kế, dù ống bền đến mấy chăng nữa. Còn áp kế điện thì giải quyết nhiệm vụ này rất có kết quả: đo điện trở của manganin đang chịu áp suất cần xác định, có thể căn cứ vào mối tương quan đã biết để xác định áp suất với bất kỳ độ chính xác nào.
    Các hợp kim manganin còn có một tính chất rất quý nữa là tính chống rung, tức là khả năng hấp thụ năng lượng dao động. Nếu một người gàn dở nào đó định đúc một cái chuông bằng manganin thì với cái chuông đó, chắc hẳn anh ta không thể triệu tập nổi một cuộc họp khóm phố: đáng lẽ phải là tiếng chuông cấp báo ngân vang thì chuông manganin chỉ phát ra những tiếng rè rè cụt ngủn.
    Nhưng nếu sự im lặng là một nhược điểm rất rõ đối với cái chuông, thì đối với bánh xe tàu hỏa hoặc tàu điện, đối với những chỗ tiếp nối các đoạn ray và nhiều chi tiết khác phát ra tiếng kêu, đức tính biết ?ogiữ mồm giữ miệng?, không phát ra tiếng kêu chẳng cần thiết cho ai, lại là một ưu điểm nổi bật. Trong các xưởng gia công kim loại bằng phương pháp rèn và dập, nhờ các hợp kim ?ocâm? mà có thể giảm hẳn những tiếng ồn ào có hại trong sản xuất. Các hợp kim chứa 70 % mangan và 30% đồng là có khả năng kìm giữ tiếng ồn tốt nhất.
    Một điều thú vị là đồng đỏ mangan, tức là hợp kim của đồng và mangan, có thể nhiễm từ mặc dầu các thành phần đều tách riêng ra thì đều không thể hiện các tính chất từ.
    Anh ôm trái tim Trương Chi
    Chờ tan trong nước mắt
    Đi tìm em qua những chợ búa và xóm làng
    Qua những chiều tắt nắng
    Dấu chân anh trong cỏ còn đọng đầy mưa xuân
  6. vmdmanowar

    vmdmanowar Thành viên mới

    Tham gia ngày:
    22/03/2003
    Bài viết:
    652
    Đã được thích:
    0
    Kể chuyện về kim loại (phần 29+30)
    Tên gọi "đơn giản" - Để thay thế platin và paladi - Quen nhau từ thủa còn thơ - Tại sao kiến lửa có màu hung? - Ngọc trai màu hồng - Trong răng cá mập - Theo ước tính khiêm tốn - Không có vi khuẩn thì không xong - Những tràng hoa trên đá ngầm.
    Trong những năm gần đây, các hợp kim có ?otrí nhớ? đã nổi tiếng rộng rãi (về hợp kim nitinon nổi tiếng nhất trong số này sẽ được kể trong mục ?oCon quỷ đồng? viết về niken). Số hợp kim như vậy mỗi năm một tăng. Chẳng hạn, các nhà hóa học đã nghiên cứu được một hợp kim trên nền mangan (có pha thêm đồng), mà về khả năng nhớ lại hình dạng trước kia của mình thì nó chẳng thua kém nitinon nổi tiếng. Hợp kim này chế tạo đơn giản, dễ gia công và nhất định sẽ tìm được nhiều lĩnh vực sử dụng rất thú vị.
    Mangan có có mặt trong một hợp kim đặc biệt khác do các nhà khoa học Ba Lan chế tạo ra: tùy theo điện áp của dòng điện, nó có thể biểu hiện hoặc là tính chất từ, hoặc là tính chất bán dẫn. Hợp kim ?ohai mặt? như vây sẽ tìm được nhiều công việc đa dạng trong nhiều thiết bị và khí cụ điện tử.
    Các hợp kim mangan đã có dịp đi vào vũ trụ: trong tiến trình cuộc thực nghiệm công nghệ học ?oPhản lực? được thực hiện năm 1976 trên trạm quỹ đạo ?oChào mừng - 5?, que hàn bằng mangan - niken đã được các nhà du hành vũ trụ Borit Volưnôp và Vitali Giolobôp dùng để hàn nối các mẫu ống làm bằng thép không gỉ. Sau đó, các cuộc thử nghiệm trên trái đất đã chứng tỏ rằng, chất lượng của mối hàn thật tuyệt vời: chỗ tiếp nối đủ sức chịu đựng khoảng 500 atmotphe. Cuộc thí nghiệm này có ý nghĩa thực tiễn rất quan trọng, bởi vì phương pháp hàn các chi tiết dạng ống được coi là một trong những phương pháp có triển vọng để trong tương lai không xa tiến hành công tác lắp ráp trong khoảng không vũ trụ.
    Các nhà chế tạo ô tô luôn muốn làm cho động cơ có công suất lớn nhưng lại tiêu hao ít nhiên liệu nhất. Để giải quyết hai nhiệm vụ này ngay cùng một lúc, cần phải nâng cao tỷ số nén trong xi lanh, nhưng làm như vậy thì hay xảy ra sự kích nổ làm cho động cơ chóng hỏng. Thế là phải kêu gọi sự giúp đỡ của các chất chống kích nổ - đó là những chất đặc biệt để pha thêm vào nguyên liệu: ở đây, đảm nhiệm xuất sắc vai trò này là các hợp chất của chì. Tuy vậy, tính độc của các hợp chất chì đã trở thành điều mà ai cũng biết. Dù muốn hay không muốn rồi cũng phải tìm chất khác thay thế chúng. Sau nhiều năm tìm tòi nghiên cứu, các nhà bác học đã tìm được những chất chống kích nổ mới - đó là các hợp chất hữu cơ cơ bản của mangan. Thì ra các chất vô hại có cái tên ?ođơn giản? này (chẳng hạn, tributilstannocyclopentadieniltricarbonil - mangan) không thua kém các bậc tiền bối họ nhà chì về khả năng chống kích nổ.
    Suốt một thời gian dài, để điều chế nitơ siêu tinh khiết, người ta phải dùng các kim loại đắt tiền như platin và palađi làm chất xúc tác. Tại Viện Hóa học vô cơ và Điện hóa học thuộc Viện hàm lâm khoa học Gruzia, các nhà nghiên cứu đã đề xuất một phương pháp, trong đó, mangan đóng vai trò chất xúc tác rất công hiệu. Nhà máy sợi tổng hợp ở Rustavi (Gruzia) đã chế tạo được thiết bị điều chế nitơ hoàn toàn vô trùng từ không khí; thứ nitơ này rất cần thiết để sản xuất sợi capron.
    Ngay từ thời thơ ấu, chúng ta đã làm quen với một hợp chất của mangan - đó là kali pecmanganat, hay gọi một cách đơn giản là ?othuốc tím?: với tư cách là thuốc diệt trùng, nó được dùng để rửa vết thương, súc miệng, bôi vết bỏng. Trong các phòng thí nghiệm hóa học, hợp chất này được sử dụng rộng rãi trong phép phân tích định lượng - đó là phép định lượng bằng pecmanganat. Giống như nhiều nguyên tố khác, mangan hết sức cần thiết cho sự phát triển bình thường của cơ thể động vật và thực vật. Thông thường, hàm lượng mangan trong cơ thể động vật và thực vật không vượt quá vài chục phần triệu nhưng một số đại biểu của thực vật và động vật lại tỏ ra rất chuộng nguyên tố này. Chẳng hạn, trong cơ thể kiến lửa có đến 0,05 % mangan; các loại nấm gỉ (gây bệnh gỉ cây), rong lươn, củ ấu còn giàu mangan hơn nữa. Trong một số loài vi khuẩn, hàm lượng mangan lên đến vài phần trăm. Trong máu người có 0,002 - 0,003 % mangan. Nhu cầu về mangan của cơ thể chúng ta trong một ngày đêm chừng 3 - 8 miligam. Khi loại trừ mangan ra khỏi khẩu phần thức ăn của những con chuột thí nghiệm thì chúng mất khả năng sinh sản, nhưng chỉ cần bổ sung mangan clorua vào thức ăn thì chúng lại có khả năng sinh con đẻ cái.
    Trên bờ các hòn đảo Nhật Bản có khá nhiều trại nuôi trai lấy ngọc nhân tạo. Như các nhà bác học đã khẳng định, màu của ngọc trai phụ thuộc vào thành phần hóa học của nước nơi trai sinh sống. Ngọc trai màu phớt hồng thường được ưa chuộng nhất. Để cho sản phẩm của các loài thân mền làm ra có màu sắc đúng như vậy, chỉ cần tăng thêm hàm lượng mangan trong nước. Nếu pha thêm các nguyên tố khác thì sẽ sản sinh được ngạc trai có đủ mọi màu sắc: xanh da trời, xanh lá cây, vàng da cam, màu tím hoa cà.
    Vì đang nói đến thực vật và động vật nên phải nhớ đến các loài cá, mà cụ thể là con cá mập đã nhắc đến ở trên. Các nhà bác học đã nghiên cứu những chiếc răng của con cá biển hung dữ này vốn đã nằm dưới đáy đại dương vài ngàn năm. Chiếc răng vẫn nguyên vẹn nhưng bị bao bọc bởi các hợp chất của sắt và mangan. Các hợp chất ấy được lấy từ đâu?
    Ngay từ thế kỷ trước, chính xác hơn là vào năm 1876, ròng rã suốt ba năm trời, chiếc thuyền buồm ba cột của nước Anh tên là ?oChallenger? đã rà khắp đáy biển và đại dương với những mục đích khoa học. Trong số những ?ochiến lợi phẩm? thu được, nó đã chở về nước Anh những vật thể hình quả thông đầy bí ẩn, có màu thẫm lấy được từ những nơi khác nhau trên đáy biển. Bởi vì mangan là thành phần chính của những ?oquả thông? này nên người ta gọi chúng là những ?ochồi mangan?, hay diễn đạt một cách khoa học là những kết hạch sắt - mangan. Các cuộc thám hiểm tiếp theo đã cho biết rằng, những khối tích tụ vẫn yên vị ở nhiều nơi dưới đáy đại dương. Tuy nhiên, cho đến giữa thế kỷ XX vẫn chưa ai tỏ ra đặc biệt quan tâm đến chúng. Và chỉ trong những năm gần đây, do sự thiếu hụt tương đối quặng mangan nên những của cải ngầm dưới nước đã thu hút được sự chú ý của các nhà bác học. Các vùng có nhiều kết hạch đã được khảo sát kỹ lưỡng - kết quả thật quá sức tưởng tượng. Theo dự tính ban đầu (có thể mạnh dạn nói thêm rằng, đó là những dự tính quá khiêm tốn), chỉ riêng ở Thái Bình Dương cũng đã tích tụ được hàng trăm tỷ tấn ( !) quặng sắt - mangan tuyệt vời. Mà đúng là quặng: hàm lượng mangan trong đó đạt đến 50 %, còn sắt - 27 %. (Tinh quặng của một số kết hạch chứa 98 % mangan đioxit và có thể sử dụng ngay mà không cần chế biến gì nữa, chẳng hạn, vào việc sản xuất pin).
    Đại Tây Dương cũng chứa nhiều tài nguyên không kém. Cách đây chưa lâu lắm, đoàn thám hiểm gồm các nhà khoa học Xô - viết trên chiếc tàu ?oHiệp sĩ? đã phát hiện được những kết hạch sắt - mangan ở đáy Ân Độ Dương. Kết quả tính toán cho thấy rằng, cả đại dương này cũng không nghèo hơn các ?obạn hữu? của mình.
    Theo giả định của các nhà hải dương học, các kết hạch xuất hiện do sự tập trung các chất khoáng có trong các dung dịch nước xung quanh một vật thể nào đó. Một số nhà bác học cho rằng, ở đây nếu không có sự tham gia của các vi khuẩn dưới biển - ?ocác nhà tuyển khoáng tế vi?, thì mọi việc cũng không xong. Các nhà sinh học ở Lêningrat đã phát hiện ra loài vi khuẩn ?osản sinh ra kim loại? mà trước đây chưa ai biết, có khả năng ?okhai thác? và tích tụ mangan từ nước biển. Trong những điều kiện của phòng thí nghiệm, ?ocác nhà luyện kim dưới nước? đã bộc lộ năng lực làm việc tuyệt vời: sau 2 - 3 tuần làm việc, chúng đã tạo nên những kết hạch mangan có độ lớn bằng đầu que diêm. Nếu chú ý rằng, bản thân những ?ongười lao động? này cũng rất khó nhìn thấy dưới kính hiển vi, thì chúng ta không thể thừa nhận năng suất như vậy là rất cao.
    Các nhà khoa học của một trường đại học tổng hợp trên đảo Hawaii (Mỹ) chuyên nghiên cứu việc nuôi cá bột ở các vùng nước ven biển đã thu được những kết quả rất bất ngờ. Để bảo đảm chỗ ở cho cá bột, họ đã tạo nên những dải đá ngầm nhân tạo ở vùng gần bờ bằng cách ném một số ô tô cũ xuống biển. Các chuyên gia nghề cá đã vô cùng kinh ngạc khi họ tiến hành kiểm tra trại cá của mình sau nửa năm: thì ra tất cả các ô tô đều được bao bọc bởi những ?otràng hoa? gồm những vụn quặng mangan có chọn lọc. Các nhà bác học đã không nuôi cấy mangan từ nước biển đó sao?
    Trong những vòng cáp điện thoại ngầm - Vứt bỏ do sự ngộ nhận - Kỷ niệm chương khác thường - Để làm việc ở "rốn biển" - "Bưu kiện" từ vũ trụ - Nước Nga có cần không? - Đường vào lò Mactanh.
    Nhưng hãy trở lại với những kết hạch của chúng ta. Hình dáng của chúng khiến ta nghĩ đến những củ khoai tây. Mầu sắc của chúng thay đổi từ nâu đến đen tùy thuộc vào hàm lượng sắt hoặc mangan có trong đó. Nếu hàm lượng của mangan lớn thì chúng có màu đen tuyền.
    Thông thường, các kết hạch có kích thước từ dưới 1 milimet đến 10 - 15 xentimet. Nhưng đôi khi cũng gặp các kết hạch có kích thước rất lớn. Nhà bảo tàng của viện hải dương học Xcrip (ở Mỹ) còn giữ một kết hạch có khối lượng 57 kilogam tìm được ở vùng đảo ở Hawaii. Lớn hơn nữa là một kết hạch tình cờ vướng phải các vòng cáp điện thoại ngầm dưới biển khi người ta kéo lên để sửa chữa: nó cân nặng 146 kilogam. Tiếc thay, mẫu kết hạch có một không hai đó đã không trở thành vật trưng bày trong nhà bảo tàng, vì sau khi xem xét và phác họa lại, do sự ngộ nhận nên người ta đã ném nó xuống biển. Tuy vậy, kết hạch sắt - mangan dài đến một mét rưỡi do tàu ?oHiệp sĩ? vớt được ở Thái Bình Dương đã phá vỡ tất cả mọi kỷ lục: tảng này nặng gần một tấn.
    Những thí nghiệm nhằm đề ra quy trình công nghệ tách lấy sắt và mangan ra khỏi kết hạch đã mang lại những kết quả ban đầu. Một kỷ niệm chương độc đáo đã được trao cho hàng loạt các nhà bác học từng có cống hiến to lớn vào việc chinh phục đại dương: vật liệu làm kỷ niêm chương đó là kim loại tinh luyện được từ các kết hạch mà người ta lấy lên từ đáy đại dương ở độ sâu gần năm kilomet.
    Nhiều nước đã thực sự quan tâm đến vấn đề khai thác các kho tàng đại dương. Hiện nay người ta đang chế tạo những tàu ngầm chuyên dụng, máy kéo lội nước, máy xúc đặt trên phao và các thiết bị khác để khai thác các kho báu từ đáy đại dương. Công nghiệp khai khoáng đại dương sẽ có những thế mạnh không thể chối cãi được đối với công nghiệp mỏ trên cạn, vì nó không đòi hỏi phải xây dựng đường xá và hệ thống đường ống như ở trên cạn. Tàu bè có thể đưa người và thiết bị tới bất cứ nơi nào trên đại dương và có thể vận chuyển khoáng sản khai thác được theo bất kỳ hành trình cần thiết nào. Chẳng hạn, các công trình sư Hà Lan đã đề xuất dự án thiết kế máy xúc tự động có bánh xích, hoạt động dưới nước, dùng để khai thác quặng mangan và các quặng khác ở đáy biển; ?ongười thợ mỏ tự động? này có thể làm việc ở độ sâu 5 kilomet. Tất cả các cơ cấu của nó đều chạy bằng điện. Người ta dự định dùng máy quay truyền hình để vận hành loại máy này, nó cho phép người điều khiển cứ ngồi trên tàu chở quặng đại dương mà chỉ huy việc khai thác dưới ?orốn biển?. Guồng xoắn của máy xúc sẽ bới quặng và đưa quặng vào gầu máy xúc.
    Liên Xô cũng đang triển khai công tác nghiên cứu khoa học và thiết kế chế tạo đồng bộ nhằm khai thác tài nguyên dưới biển. Năm 1983, chiếc tàu kiểu mới mang tên ?o Nhà địa chất biển? đã rời giá lắp ráp của nhà máy đóng tàu biển Đen ở thành phố Nicolaepxcơ. Tàu này là một phòng thí nghiệm lưu động trên mặt nước rất lớn, nó sẽ tiến hành việc tìm kiếm kết hạch sắt - mangan. Trên thực tế, tàu ?o Nhà địa chất biển? sẽ có thể lấy mẫu đất đá dưới đáy biển ở bất cứ độ sâu nào.
    Hàng năm, có hàng trăm đoàn thám hiểm đi ra các biển và đại dương bao trùm hơn 70 % bề mặt của trái đất. Không còn quá xa nữa, sẽ đến lúc bắt đầu công cuộc khai thác các nguồn dự trữ của đại dương theo quy mô công nghiệp, còn bây giờ thì các nhà địa chất và những người thợ mỏ vẫn bận rộn với việc khai thác lòng đất.
    Về hàm lượng trong vỏ trái đất thì mangan không thua kém nhiều nguyên tố hóa học. Các nhà địa chất đã xác định rằng, hầu hết các mỏ mangan đều có tuổi xấp xỉ như nhau. Theo ý kiến của nhiều nhà bác học thì điều đó nói lên nguồn gốc vũ trụ trong các khối tích tụ mangan. Có một giả thuyết cho rằng, khoảng hai tỷ năm trước đây, một đám bụi thiên thạch giàu mangan đã rơi xuống bề mặt của trái đất; chính nó đã tạo thành các mỏ của nguyên tố này trên lục địa cũng như dưới đáy các biển và đại dương.
    Quặng mangan có ở nhiều nước, những về trữ lượng mangan thì không có nước nào cạnh tranh nổi với Liên Xô. Mỏ mangan ở Chiatura (thuộc nước Cộng hòa Xã hội chủ nghĩa Xô - viết Gruzia) của Liên Xô là một trong những mỏ lớn nhất trên thế giới. Một thực tế đặc trưng là hàng năm, nước của con sông nhỏ Cvirila (một nhánh của sông Rioni) chảy ở vùng này mang ra biển Đen hơn một trăm ngàn tấn mangan.
    Từ những năm 70 của thế kỷ XIX đã bắt đầu khai thác quặng ở Chiatura theo kiểu công nghiệp. Sau đó ít lâu, ở nước Nga, một mỏ lớn nữa ở vùng Nicopôn đã bắt đầu cung cấp mangan. Dù điều đó lạ lùng đi nữa nhưng nước nga thời Nga hoàng vẫn ?okhông cần? kim loại này: chẳng hạn, hầu như toàn bộ quặng mangan khai thác được trong năm 1913 đều bán ra nước ngoài. Trong những năm vệ quốc vĩ đại, các mỏ mangan ở Uran, ở Kazăcxtan, Xibia đã được đưa vào khai thác. Hiện nay, Liên Xô đứng hàng đầu thế giới về sản lượng loại quặng quý báu này.
    Các nhà máy hợp kim sắt là nơi tiêu thụ chủ yếu quặng mangan. Ở đây, nhờ các quá trình công nghệ khác nhau mà người ta sản xuất được các loại hợp kim của mangan (với sắt, với silic) hoặc mangan kim loại ở dạng thuần khiết. Con đường mangan đi vào xưởng luyện thép còn tiếp tục.
    Anh ôm trái tim Trương Chi
    Chờ tan trong nước mắt
    Đi tìm em qua những chợ búa và xóm làng
    Qua những chiều tắt nắng
    Dấu chân anh trong cỏ còn đọng đầy mưa xuân
  7. jokes

    jokes Thành viên quen thuộc

    Tham gia ngày:
    09/06/2002
    Bài viết:
    283
    Đã được thích:
    0
    Mấy bác có công rất lớn trong việc post lai cuốn sách cho anh em tui cùng đọc... Tui phải nói lời cảm ơn chân thành thay mặt cho toàn thể anh em trong box đến các bác....
    Nhưng cũng xin các bác được cho tui góp ý vài lời.. về chuyện biên soạn cuốn sách nhé.. ( ngưòi ta bảo: lời góp ý làm cho ta sống tốt hơn .. và làm việc hiệu qủa hơn mà...hi`hi`)
    Tui cung hăm hở đọc câu chuyện các bác đã post, nhưng tiếc là nó thiếu mất mấy trang mà các bác chẳng để ý dùm em cái, lam em đọc cụt cả hứng..
    VD phần 19, phần 28, em tìm lên tìm xuống chẳng thấy đâu, ngỡ máy tính mình hỏng... hi`ih`, kiểm tra lại vẫn ko thấy, các bác làm ơn xem lại giùp nhé...
    Nhất là các bác đã tu sửa rồi mà vẫn chẳng để ý..
    Thôi, có vài nhời , mong các bác để ý... để anh em tui còn được chiêm ngưỡng tác phẩm kinh điển của các bác

    Được joke sửa chữa / chuyển vào 12:26 ngày 28/06/2003
  8. vmdmanowar

    vmdmanowar Thành viên mới

    Tham gia ngày:
    22/03/2003
    Bài viết:
    652
    Đã được thích:
    0
    Kể chuyện về kim loại (phần 31)
    Năm 1910, đại hội địa chất quốc tế đã họp tại Xtockholm. Vấn đề chống nạn đói sắt là một trong những vấn đề quan trọng nhất được đặt ra cho các nhà bác học. Một ủy ban đặc biệt có nhiệm vụ tính toán trữ lượng sắt trên thế giới đã trình bày trước đại hội bản cân bằng trữ lượng này trên trái đất. Theo kết luận của các chuyên gia cỡ lớn thì 60 năm nữa tức là năm 1970, các mỏ sắt sẽ cạn kiệt hoàn toàn.
    May mắn thay, các nhà bác học ấy là những nhà tiên tri loại xoàng, mà ngày nay, loài người không phải quá dè xẻn trong việc sử dụng sắt. Nhưng liệu điều gì sẽ xảy ra nếu những lời tiên đoán của họ trở thành sự thật và quặng sắt sẽ cạn kiệt? Cuộc sống sẽ ra sao nếu sắt hoàn toàn biến mất và trên hành tinh chúng ta không còn một gam nguyên tố này nữa?
    ?o... Các đường phố sẽ lâm vào cảnh hoang tàn khủng khiếp: không có đường ray, không có toa xe, không có đầu máy xe lửa, không có ô tô ... thậm chí đá lát đường cũng biến thành đất bụi, còn cây cỏ sẽ khô héo và tàn lụi vì không có thứ kim loại rất cần cho sự sống này.
    Sự tàn phá như cơn lốc sẽ bao trùm khắp trái đất và sự diệt vong của loài người sẽ trở thành một điều không thể tránh khỏi.
    Vả lại, con người cũng không thể sống sót tới thời điểm đó, bởi vì, chỉ cần mất đi ba gam sắt trong cơ thể và trong máu thôi thì con người cũng đã đủ chấm dứt sự tồn tại của mình trước khi xảy ra những biến cố kể trên. Mất hết sắt trong cơ thể, tức là mất năm chục phần triệu trọng lượng của mình - điều đó đối với con người có nghĩa là cái chết!?.
    Tất nhiên rồi, vì muốn nói lên vai trò cực kỳ to lớn của sắt trong cuộc sống của chúng ta nên nhà khoáng vật học Xô - viết lỗi lạc, viện sỹ A. E. Ferxman đã phác họa một bức tranh buồn thảm đến như vậy. Nếu không có sắt thì không có một sinh vật nào có thể tồn tại trên trái đất: chính nguyên tố hóa học này có mặt trong máu của tất cả mọi loại động vật trên hành tinh chúng ta. Sắt hóa trị hai có trong huyết cầu tố (hemoglobin) - chất cung cấp oxi cho các mô của cơ thể sống. Chính vì có sắt nên máu có màu đỏ.
    Hồi thế kỷ trước, lần đầu tiên các nhà bác học đã phát hiện được sắt trong máu người. Người ta kể rằng, khi biết điều đó, một sinh viên hóa học si tình đã quyết định tặng người yêu một chiếc nhẫn làm bằng sắt của máu mình. Cứ định kỳ lấy máu ra, anh chàng thu được một hợp chất mà từ đó tách sắt ra bằng phương pháp hóa học. Chưa gom đủ sắt để làm chiếc nhẫn thì anh chàng tội nghiệp này đã lăn ra chết vì thiếu máu: chính toàn bộ lượng sắt có trong máu người chỉ vẻn vẹn có vài gam.
    Khi thiếu sắt, người chóng mệt mỏi, bị nhức đầu thần sắc trở nên lờ đờ. Ngay từ thời xưa người ta đã biết những đơn thuốc ?ochứa sắt? khác nhau. Năm 1783, ?oTạp chí kinh tế? đã viết: ?oTrong một số trường hợp, bản thân sắt là một vị thuốc rất tốt, uống mạt sắt thật mịn ở dạng đơn sơ hoặc tẩm đường đều bổ ích?. Cũng trong bài báo này, tác giả còn giới thiệu những thứ ?othuốc sắt? khác, như ?otuyết sắt?, ?onước sắt?, ?orượu vang thép? (chẳng hạn, ?orượu vang chua như rượu vang sông Ranh), ngâm với mạt sắt sẽ là một thứ thuốc rất tốt?).
    Dĩ nhiên, ở nửa cuối thế kỷ XX thì người bệnh không cần phải nuốt mạt sắt nữa, song rất nhiều hợp chất của sắt được sử dụng rộng rãi ngay cả trong y học hiện đại. Một số loại nước khoáng cũng chứa nhiều sắt. Lịch sử đã ghi lại việc tìm ra nguồn nước chứa sắt đầu tiên ở nước Nga. Năm 1714, một người thợ nhà máy luyện đồng ở Carelia tên là Ivan Reboep ?obị đau tim đến nỗi không lê nổi đôi chân?. Một hôm, tại một vùng đầm lầy chứa sắt cách hồ Lađôga không xa, anh ta nhìn thấy một lạch nước và đã uống nước này. ?oUống nước này chừng ba ngày thì anh ta khỏi bệnh?. Hoàng đế Piôt đệ nhất biết việc này và ngay sau đó đã ra lệnh công bố ?oThông báo về nước hỏa thần ở Olonet? - gọi như thế để tôn vinh vị thần của chiến trận và sắt thép. Hoàng đế và gia quyến đã nhiều lần đến vùng này để uống thử nước chữa bệnh đó.
    Trong bảng các nguyên tố của Menđeleep, khó tìm thấy kim loại nào khác mà lịch sử nền văn minh lại gắn bó mật thiết với nó đến thế. Thời cổ xưa, một số dân tộc đã quý sắt hơn vàng. Chỉ những người quyền quý mới có thể đeo những trang sức bằng sắt, mà thường chúng được lắp trong ?ogọng? vàng. Ở La Mã cổ đại, thậm chí người ta còn làm nhẫn cưới bằng sắt. Trong thiên anh hùng ca ?oIliat?, Homer đã kể lại về người anh hùng trong cuộc chiến tranh ở Troa là Asin đã dùng chiếc đĩa làm bằng sắt hạt để ban thưởng cho kẻ chiến thắng cho các cuộc thi ném đĩa. Trong các hầm mộ cổ Ai Cập, bên cạnh những của quý khác còn thấy chiếc vòng đeo cổ, trong đó các vòng hạt bằng sắt được bố trí xen lẫn các vòng hạt bằng vàng.
    Những tài liệu còn giữ được cho đến ngày nay cho biết rằng, một vị faraon xứ Ai Cập đã gặp vua của người Hittie mà hồi giữa thiên niên kỷ thứ hai trước công nguyên đã lừng danh về thành tích làm đồ sắt, với lời thỉnh cầu gửi sắt cho mình để đổi lấy vàng ?ovới lượng bao nhiêu cũng được?. Theo lời vị faraon thì trên sa mạc có bao nhiêu cát, ông ta có bấy nhiêu vàng. Vậy mà với sắt, ông ta lại vấp phải những khó khăn nghiêm trọng. Khi khai quật ở Ninevia - kinh đô xứ Assiria cổ xưa, trong cung điện của vua Sargon đệ nhị đầy quyền uy, từng trị vì hồi cuối thế kỷ thứ VIII trước công nguyên, các nhà khảo cổ học đã khám phá được một kho sắt thực thụ: trong một căn phòng đặc biệt còn tồn trữ khoảng 200 tấn các sản phẩm khác nhau làm bằng sắt (mũ sắt, lưỡi cưa, các công cụ rèn. ..) và cả những tảng sắt chưa gia công mà có lẽ ông vua lo xa này đã cất giấu để phòng ngày mạt vận.
    Theo đà phát triển của ngành luyện kim, sắt càng ngày càng dễ kiếm hơn và cần thiết hơn. Tuy nhiên, cách đây chưa lâu, nhiều dân tộc lạc hậu vẫn còn chưa có khái niệm gì về sắt.
    Nhật ký của nhà hàng hải người Anh James Cook hồi thế kỷ XVIII đã ghi lại khá nhiều chuyện buồn cười mà nhân vật chính là những thổ dân trên các hòn đảo ở Thái Bình Dương. Một lần, Cook đã mang đến làm quà cho họ một dúm đinh sắt. Có lẽ, trước đó những người bản địa ở đây chưa hề sử dụng những vật kim loại lạ lùng này, vì vậy, họ cứ lóng ngóng xoay những cái đinh trên tay. Mặc dầu Cook đã cố gắng giảng giải về công dụng của những cái đinh này, song những người dân trên đảo vẫn không thể nào hiểu được.
    Một vị thầy cúng được kính nể nhất, có lẽ vốn được coi là chuyên gia cỡ lớn về mọi vấn đề, đã giúp nhà hàng hải trong việc này. Với vẻ trịnh trọng, ông ta tuôn ra một tràng những lời lẽ dạy đời, rồi những người trong bộ lạc của ông ta liền chôn những chiếc đinh xuống đất. Bấy giờ, đến lượt những người khách phải ngạc nhiên. Khi nhìn thấy vẻ mặt ngơ ngác của khách, những người bản địa đã giảng giải cho những người khách da trắng này biết rằng, từ những cái que sắt mà họ vừa gieo xuống đất, chẳng bao lâu sẽ mọc lên những cây tựa như cây chuối có đeo những chùm đinh. Sau khi thu hoạch song một vụ ?oquả? kim loại được mùa, bộ lạc của họ nhờ có nhiều quả ấy nên có thể đánh bại mọi kẻ thù.
    Nhưng nhiều cư dân trên đảo Polinesia thời bấy giờ đã biết đánh giá đúng giá trị của sắt. Về sau, Cook nhớ lại: ?o... Không một thứ gì thu hút nhiều người đến xem con tàu của chúng tôi như kim loại này. Đối với họ, sắt bao giờ cũng là món hàng quý giá nhất, khao khát nhất?. Có lần các thủy thủ của ông đã kiếm được cả một con lợn nhờ một cái đinh gỉ. Một lần khác, nhờ vài con dao cũ không dùng đến mà những người dân trên đảo đã cho các thủy thủ rất nhiều cá, đủ để cả đội thuyền ăn trong nhiều ngày.
    Nghề thợ rèn đã được coi là một nghề cao quý nhất trong những nghề cao quý trong mọi thời đại. Một huyền thoại cổ xưa ước chừng đã lưu truyền từ ba ngàn năm nay đã kể về một sự kiện như sau.
    Khi hoàn thành việc xây dựng ngôi đền ở Gieruxalem, vua Xalomon đã mở tiệc khoản đãi, có mời cả những người thợ đã tham gia xây cất ngôi đền đồ sộ này đến dự. Khách khứa đến dự tiệc vừa chuẩn bị nếm các món ăn thì bỗng nhiên nhà vua hỏi:
    - Nào trong số những người thợ xây dựng thì ai là người chủ chốt nhất? Ai đã có đóng góp lớn nhất vào việc kiến tạo nên ngôi đền kỳ diệu này?
    Một người thợ nề đứng lên thưa:
    - Hiển nhiên, ngôi đền này là do bàn tay chúng tôi tạo ra, và ở đây không thể có hai ý kiến. Chúng tôi những người thợ nề, đã từng đặt viên gạch cho ngôi đền. Hãy nhìn xem, những bức tường, cổng vòm, mái vòm cuốn vững chắc biết bao! Ngôi đền sẽ vững chãi đời đời để lưu lại danh tiếng của đức vua Xalomon.
    Người thợ mộc xen vào :
    - Không có gì phải tranh cãi nữa, đúng là ngôi đền này bằng đá, nhưng, hỡi các vị khách quý! Các ngài hãy tự phán xét lấy. Thử hỏi, ngôi đền này có tốt đẹp được hay không nếu như tôi và các đồng nghiệp của tôi không làm việc cật lực. Nhìn những bức tường trơ trụi liệu có dễ chịu không nếu chúng tôi không trang điểm cho chúng bằng gỗ đào hoa tâm và gỗ bá hương Libăng? Còn ván lát sàn của chúng tôi thì toàn bằng các loại gỗ hoàng dương hảo hạng, trông đẹp mắt biết bao! Chúng tôi, những người thợ mộc, hẳn có quyền coi mình là những người thực sự sáng tạo nên cung điện thần tiên này.
    Người thợ đào đất ngắt lời anh ta :
    - Hãy nhìn tật gốc, tôi muốn biết, những kẻ khoác lác này (anh ta hất đầu về phía người thợ nề và thợ mộc) sẽ dụng nên ngôi đền này như thế nào nếu chúng tôi không đào hố móng cho nó. Hẳn là bức tường và công lao trang trí của các người sẽ sụp đổ ngay từ ngọn gió đầu tiên, chẳng khác gì ngôi nhà bằng giấy!
    Nhưng không phải vô cớ mà vua Xalomon được mệnh danh là một ông vua sáng suốt. Vẫy gọi người thợ nề đến, nhà vua hỏi:
    - Bộ đồ nghề của anh do ai làm ra?
    - Tất nhiên là người thợ rèn. - Anh thợ nề bối rối đáp.
    Nhà vua quay sang anh thợ mộc :
    - Còn đồ nghề của anh?
    - Không phải người thợ rèn thì còn ai nữa. - Anh ta trả lời không chút do dự.
    - Thế còn xẻng và quốc của anh? - Vua Xalomon đắc chí hỏi người thợ đào đất.
    - Tâu bệ hạ, bệ hạ biết đấy, chỉ có người thợ rèn mới có thể làm ra chúng. - Câu trả lời là như thế.
    Lúc bấy giờ vua Xalomon liền đứng dậy, đến bên một người nhọ nhem và khiếm tốn - đó là người thợ rèn. Nhà vua dẫn người này đến giữa phòng và lên tiếng :
    - Đây là người chủ chốt xây dựng nên ngôi đền, - ông vua sáng suốt nhất trong mọi ông vua thốt lên như vậy. Vừa nói, ông vừa mời người thợ rèn ngồi lên đệm gấm ngay bên cạch mình và mang đến cho anh ta một cốc rượu quý.
    Truyền thuyết là như vậy. Chúng ta không thể bảo đảm về tính xác thực của những sự việc vừa kể, nhưng bất luận thế nào chăng nữa, trong đó cũng phản ánh sự kính trọng mà mọi người luôn luôn dành cho những người khai thác và chế biến sắt, lẫn cả vai trò to lớn mà từ thời cổ xưa con người đã dành cho sắt.
    Anh ôm trái tim Trương Chi
    Chờ tan trong nước mắt
    Đi tìm em qua những chợ búa và xóm làng
    Qua những chiều tắt nắng
    Dấu chân anh trong cỏ còn đọng đầy mưa xuân
  9. vmdmanowar

    vmdmanowar Thành viên mới

    Tham gia ngày:
    22/03/2003
    Bài viết:
    652
    Đã được thích:
    0
    Kể chuyện về kim loại (phần 32)
    Đồng điệu với huyền thoại phương đông, ở nước Áo cũng có một truyền thuyết lâu đời về núi quặng vùng Stiria, nơi mà quặng giàu sắt đã được khai thác qua nhiều thế kỷ. Truyền thuyết kể rằng, ngày xưa, có một lần thần nước bị xa vào lưới của một người đánh cá tại cái hồ vùng này. Để được thả, thần nước đã hứa nộp một món tiền chuộc mạng rất lớn: nộp vàng trong suốt một năm, nộp bạc trong mười năm, hoặc nộp sắt mãi mãi. Không đắn đo suy tính những người dân địa phương đã chọn sắt.
    Từ thời thượng cổ xa xưa, cục sắt đầu tiên lọt vào tay con người có lẽ không phải là sắt của trái đất, mà là sắt có nguồn gốc vũ trụ: sắt có mặt trong những khối thiên thạch đã từng rơi xuống hành tinh của chúng ta. Không phải ngẫu nhiên mà trong một số ngôn ngữ cổ xưa, sắt có tên là ?ođá trời?. Trong khi đó, thậm chí nhiều nhà bác học ngay từ hồi cuối thế kỷ XVIII vẫn không chấp nhận ý nghĩa cho rằng, vũ trụ có thể cung cấp sắt cho trái đất. Năm 1751, một thiên thạch đã rơi xuống gần thành phố Vagram thuộc nước Đức. Bốn chục năm sau, một giáo sư ở Viên đã viết về sự kiện này: ?o Có thể nào tưởng tượng được rằng, hồi năm 1751, ngay cả những người có học vấn nhất nước Đức đã dám tin là có một cục sắt từ trên trời rơi xuống; hồi bấy giờ, nhận thức của họ về khoa học tự nhiên thật kém cỏi biết chừng nào... Nhưng ở thời đại chúng ta, không thể coi những chuyện hoang đường như thế là có thể xảy ra?.
    Nhà bác học nổi tiếng người Pháp là Lavoasie (Lavoisier) cũng ủng hộ quan điểm này. Năm 1772, ông đã tán đồng ý kiến của nhiều bạn đồng nghiệp cho rằng, ?ovề mặt vật lý học thì không thể có chuyện đá từ trên trời rơi xuống?. Năm 1790, ngay cả viện hàn lâm khoa học Pháp cũng đã thông qua một quyết nghị đặc biệt: từ nay về sau sẽ hoàn toàn không xem xét đến những thông báo về việc đá rơi xuống trái đất, bởi vì các nhà bác học vĩ đại đã hoàn toàn thấy rõ tính phi lý của chuyện đồn đại về những vị khách nhà trời. Nhưng các thiên thạch vốn chẳng e dè quyết nghị răn đe của các viện sĩ Pháp, nên thỉnh thoảng vẫn tiếp tục ghé thăm hành tinh của chúng ta, chính vì vậy mà đã khuấy động sự yên tĩnh của các ngôi sao khoa học. Càng ngày càng có thêm nhiều sự kiện thực tiễn xác nhận điều đó, mà như mọi người đều biết, các sự kiện thực tiễn là những bằng chứng bướng bỉnh nhất, nên đến năm 1803, viện hàm lâm khoa học Pháp (đành cam chịu vậy!) đã buộc phải thừa nhận những cục ?ođá trời? - từ đó chúng được phép rơi xuống trái đất.
    Mỗi năm, hàng ngàn tấn thiên thạch chứa đến 90% sắt rơi xuống mặt địa cầu. Thiên thạch lớn nhất được tìm thấy ở vùng tây - nam châu Phi vào năm 1920. Đó là thiên thạch ?oGoba?, nặng khoảng 60 tấn. Năm 1895, Robert Peary - nhà khảo sát địa cực người Mỹ, đã tìm thấy một thiên thạch sắt nặng 34 tấn đang nằm trong băng giá của đảo Greenland. Phải vượt qua biết bao khó khăn ghê gớm mới đưa được thiên thạch này về đến New York, và nó được bảo tồn ở đó cho đến ngày nay.
    Lịch sử cũng đã ghi nhận kích thước vô cùng lớn của nhiều vị ?odu khách? vũ trụ; các vị này đã từng gặp trái đất trên đường đi của mình. Cuối thế kỷ XIX, ở sa mạc Arizona (nước Mỹ), người ta đã phát hiện được một miệng hố hình phễu rất lớn, có đường kính 1.200 mét và chiều sâu 175 mét. Một thiên thạch sắt khổng lồ từng rơi xuống đây từ thời tiền sử đã tạo nên hố này. Người Mỹ tỏ ra đặc biệt quan tâm đến thiên thạch, hơn nữa, sự quan tâm đó càng được nung nấu thêm bởi những lời đồn đại rằng, hình như đã có người tìm được kim cương và platin trong các mảng vỡ của thiên thạch. Thậm chí, một công ty cổ phần đã được thành lập nhằm sử dụng thiên thạch vào các mục đích công nghiệp. Tuy vậy, kiếm lời trên ?omón quà trời cho? không phải là chuyện dễ: vừa chạm phải khối chính của thiên thạch ở độ sâu 420 mét, mũi khoan đã bị gãy, và vì không tìm thấy điều gì thú vị trong các mẫu khoáng vật vừa khoan được nên các nhà kinh doanh thiên thạch đã bỏ cuộc. Theo nhận xét của các nhà bác học, khối thiên thạch ở Arizona cân nặng khoảng vài chục ngàn tấn. Cũng có thể đến một lúc nào đó, các nhà luyện kim sẽ lại quan tâm đến nó.
    Sắt thiên thạch tương đối dễ gia công và con người đã biết dùng nó để làm ra những công cụ thô sơ nhất. Nhưng tiếc thay, các thiên thạch lại không rơi xuống theo ?ođơn đặt hàng?, mà nhu cầu về sắt lại là nhu cầu thường xuyên, vì vậy, con người đã phải tìm cách lấy sắt ra khỏi quặng. Thế là đến lúc con người không những có thể sử dụng ?osắt trời? mà còn dùng cả sắt trên trái đất của mình nữa. Thời đại đồ sắt đã thay thế thời đại đồ đồng.
    Điều đó đã xảy ra khoảng ba ngàn năm trước đây. Tuy nhiên, các nhà sử học đôi khi đụng chạm phải những điều gợi đến những sự kiện rất đáng ngạc nhiên, mà nếu đó là những sự kiện xác thực thì chúng nói lên rằng, bên cạnh nền văn minh của chúng ta, có thể đã có những nền văn minh đi trước, từng đạt đến trình độ cao về văn hóa vật chất và đã từng biết đến sắt. Chẳng hạn, trong sách báo người ta gặp một tin nói rằng, hình như ở thế kỷ XVI, những người Tây Ban Nha từng đặt chân lên đất nam Mỹ đã tìm đực một cái đinh sắt dài khoảng 18 centimet tại một mỏ bạc ở Peru. Vật này hẳn là sẽ không đáng chú ý lắm nếu không xảy ra một tình huống: phần lớn chiếc đinh đã được gắn chặt trong một cục đá, mà chỉ chính thiên nhiên mới làm được việc đó, thế có nghĩa là cái đinh đã nằm trong lòng đất nhiều vạn năm. Nghe đâu một thời gian, cái đinh bí ẩn này đã được cất giữ trong văn phòng của phó vương Pêru tên là Francisco de Toledo; ông này thường cho khách khứa của mình xem cái đinh ấy.
    Người ta còn được nghe nói đến những vật tìm được khác đại loại như vậy. Chẳng hạn, ở Australia, trong một vỉa than thuộc kỷ địa chất thứ ba hình như phát hiện được một thiên thạch sắt có dấu vết gia công. Nhưng ai có thể gia công nó ở kỷ địa chất thứ ba cách xa thời đại chúng ta hàng chục triệu năm? Vì ngay cả tổ tiên hóa thạch xa xưa nhất của con người như người vượn pitecantrop cũng xuất hiện muộn hơn rất nhiều - chỉ khoảng 500 ngàn năm về trước.
    Hiện giờ, cái đinh ấy và thiên thạch ấy ở đâu? Các phương pháp hiện đại dùng để phân tích mọi vật liệu sẽ cho phép làm sáng tỏ bản chất và tuổi của chúng dù chỉ là ở một mức độ nào đó, nghĩa là sẽ khám phá được bí mật của chúng. Tiếc thay, lại không một ai biết chúng đang ở đâu. Liệu chúng có phải là những vật có thật hay không?
    Sắt là một trong chừng 5 % sắt. Nhưng chỉ một phần bốn mươi của kim loại này là tập trung ở dạng các mỏ thuận tiện cho việc khai thác. Các khoáng vật quặng chủ yếu của sắt là macnhetit, hematit, quặng sắt nâu, xiđerit. Macneti chứa đến 72% sắt, và như tên gọi ấy cho biết, nó có từ tính. Hematit, hay là quặng sắt đỏ, chứa đến 70 % sắt; tên gọi của khoáng vật này xuất phát từ tiếng Hy Lạp ?ohema?, nghĩa là máu. Theo một số nhà bác học, bản thân từ ?osắt? trong tiếng Nga là ?ojelezo? cũng xuất phát từ tiếng Phạn ?ojanja?, có nghĩa là kim loại, là quặng. Một số nhà bác học khác cho rằng, từ ?ojelezo? lấy gốc từ tiếng Phạn nghĩa là ?olấp lánh? ?osáng chói?.
    Kỹ thuật tìm kiếm quặng sắt thời xưa rất kỳ lạ. Để tìm sắt, người ta dùng một cành cây ?othần kỳ? - đó là một cành hồ đào mảnh mai có cái chạc ở đầu. Người đi tìm quặng cầm hai đầu chạc, nắm chặt tay lại rồi lên đường. Lúc đó phải đòi hỏi nghiêm ngặt ?oquy phạm công nghệ tìm kiếm?; quy phạm này chỉ bảo đảm việc tìm kiếm có kết quả trong trường hợp nếu các ngón tay của nhà địa chất thời cổ luôn luôn hướng lên trời. Có lẽ tất cả những thất bại của những người tìm quặng thời bấy giờ (mà tiếc thay thất bại lại nhiều gấp bội so với thành công) đều được cắt nghĩa bởi sự vi phạm ?ocông nghệ? tìm kiếm. Còn nếu như tất cả mọi quy tắc cần thiết đều được tuân thủ thì tại thời điểm mà người tìm quặng đi đến chỗ có quặng sắt, cành cây sẽ cụp xuống để chỉ nơi có quặng.
    Ngay ở thời bấy giờ, nhiều người đã hiểu rằng, những phương pháp như vậy thật là ngây ngô. Nhà bác học Đức nổi tiếng ở thế kỷ XVI là Gheorg Agricola đã viết: ?oNgười thợ mỏ thực sự mà chúng ta muốn coi là am hiểu và nghiêm túc sẽ không sử dụng cái gậy thần kỳ, bởi vì một người khôn ngoan dù chỉ biết đôi chút bản chất của sự vật cũng hiểu được rằng, cái chạc ấy chẳng mang lại cái gì cho anh ta trong việc này; anh ta có trong tay những dấu hiệu tự nhiên của quặng và anh ta phải dựa vào đó?. Tuy nhiên, nhiều năm sau, việc tìm quặng, chẳng hạn như ở Uran, vẫn được tiến hành nhờ cái cành cây.
    Anh ôm trái tim Trương Chi
    Chờ tan trong nước mắt
    Đi tìm em qua những chợ búa và xóm làng
    Qua những chiều tắt nắng
    Dấu chân anh trong cỏ còn đọng đầy mưa xuân
  10. vmdmanowar

    vmdmanowar Thành viên mới

    Tham gia ngày:
    22/03/2003
    Bài viết:
    652
    Đã được thích:
    0
    Kể chuyện về kim loại (phần 33)Trong thời đại chúng ta, các nhà địa chất được trang bị những khí cụ tân tiến hơn, nhờ chúng mà họ đã sờ nắn được khắp dọc ngang hành tinh của chúng ta. Dường như trên trái đất này không còn những ?ovết trắng? chưa được thăm dò địa chất. Vậy mà thiên nhiên vẫn ban cho con người những mỏ sắt mới cũng như những mỏ khoáng sản khác.
    Chẳng hạn, ở Braxin có triền núi Carajas. Cách đây không lâu, miền này vốn là những dải bụi cây nhiệt đới khó đi lại, chẳng có gì đáng chú ý. Thế nhưng một hôm, một máy bay nhỏ khi bay qua đây đã bị những đám mây thấp dày đặc ép xuống mặt đất, rồi bỗng nhiên động cơ máy bay bị trục trặc, nên người lái đã quyết định hạ xuống một bãi đất trống trong thảm rừng xanh. Máy bay đang hạ xuống thì bất ngờ, kim của các khí cụ từ nhảy loạn xạ. Người lái đã kịp cho máy bay đỗ xuống an toàn. Các nhà địa chất đã hiểu những điều vừa xảy ra và chẳng bao lâu họ đã khám phá ra bí mật của những ?osự kiện? trên mặt số của các khí cụ. Thì ra trong lòng đất ở Carajas là một kho sắt khổng lồ, vì thế nên kim của các khí cụ đo trên máy bay đã lâm vào tình trạng nhiễu loạn.
    Song chúng ta hãy một lần nữa trở lại thời kỳ cách đây vài trăm năm. Hồi thế kỷ XVII, Maxcơva bắt đầu có nhu cầu lớn về sắt. Sa hoàng Alecxây Mikhailovich đã phái hết đoàn thăm dò này đến đoàn thăm dò khác đi tìm kiếm các mỏ quặng sắt mới. Những người đi tìm quặng phải biết được ?oquặng gì lộ ra ở đâu, thế nằm ra sao?, phải xác định được ?osẽ trông cậy vào chúng được những gì và có lâu dài hay không?. Tuy vậy, các cuộc tìm kiếm đều không có kết quả.
    Còn trong những năm đầu trị vì của mình, hoàng đế Piôt đệ nhất đã ban bố sắc lệnh: ?oPhải tìm cách tăng gấp bội sắt đúc và sắt ren... và cố gắng làm cho người Nga tinh thông nghề gia công sắt, để cho sự nghiệp ấy bền vững ở quốc gia Maxcơva?. Còn đối với những kẻ mưu toan giấu kín những mỏ quặng đã tìm được thì có sẵn ?ocựu hình thảm khốc, hành hạ thân thể và án tử hình?.
    Ít lâu sau, từ Uran đã bay về một tin cho biết rằng, ở núi Cao đã tìm thấy các thân quặng giàu từ thạch: ?o...Giữa núi là rốn của khối nam châm thuần khiết, còn xung quanh là rừng thẳm và núi đá...?. Mẫu quặng gửi về Maxcơva đã được các nhà chuyên môn đánh giá cao và Sa hoàng đã ra lệnh tức khắc triển khai xây dựng các nhà máy luyện kim. Trong số các nhà máy ở vùng Uran thì nhà máy ở Nevianxcơ là lớn hơn cả. Năm 1702, Piôt đệ nhất đã giao nhà máy này cho người thợ rèn kiêm chủ xưởng đồ sắt ở Tula tên là Nikita Đemiđovich Antufiep (về sau lấy họ là Đemiđop) sau khi giao cho người này nhiệm vụ phấn đấu để nước Nga ngừng nhập khẩu sắt từ nước ngoài vào. Nhà máy phải sản xuất ?ođại bác, súng cối, súng trường, kiếm dài, lưới lê hình gươm, gươm, kiếm cho kỵ binh, mũ sắt trùm tai và che mặt, dây thép?.
    Nikita Đemiđop, về sau cả con trai ông ta là Akinfi nữa, đã làm được nhiều việc để phát triển ngành luyện kim trong nước. Sắt Uran đã được đánh giá cao trên thị trường thế giới. Hồi giữa thế kỷ XIX, tờ báo Anh ?oMorning Post? đã viết: ?oSắt Đemiđop mang nhãn ?oHắc điêu thử già? (Trên nhãn hiệu của nhà mày Đemiđop có in hình con hắc điêu thử đang chạy)... đóng vai trò quan trọng trong lịch sự nền công nghiệp quốc gia của chúng ta; lần đầu tiên nó đã được nhập cảng vào nước Anh để chế biến lại thành thép hồi đầu thế kỷ XVIII, khi mà ngành sản xuất thép của chúng ta vừa mới bắt đầu phát triển. Sắt Đemiđop đã tạo nhiều thuận lợi để gây dựng tiếng tăm cho các sản phẩm của thành phố Sefin?.
    Năm 1735, một người Vogun (một dân tộc ở vùng tây - bắc Xibia, nay gọi là dân tộc Manxi - N.D.) tên là Xtepan Chumpin tìm thấy một cục quặng sắt từ rất lớn tại một quả núi ở Uran (mà ngay sau đó được đặt tên là núi ?oÂn huệ?) và đã đưa cho kỹ thuật viên về nghề mỏ là Iartxep xem. Ông này rất quan tâm đến mẫu quặng vừa tìm được, nên đã đến xem mỏ quặng, rồi nhanh chóng báo cáo về Ecaterinbua. Khi biết sự việc này, Akinfi Đemiđop (lúc bấy giờ đã trở thành vua xứ Uran nhưng chưa được thụ phong) đã cử ngay một toán săn đuổi có vũ trang, vì ông ta không muốn để cho nguồn quặng sắt to lớn vừa mới khám phá ra trở thành tài sản của nhà nước, mà không thuộc quyền sở hữu của mình. Mặc dầu vậy, Iartxep vẫn thoát khỏi cuộc săn đuổi. Sở khai khoáng đã trao giải thưởng cho người đầu tiên phát hiện ra mỏ, nhưng ngay sau đó, Chumpin đã bị giết trong tình huống rất bí ẩn. Gia đình Đemiđop đã trả thù những ai cản trở họ trên đường đi đến các kho báu của lòng đất xứ Uran cằn cỗi như thế đấy.
    Cuối thế kỷ XVIII sang đầu thế kỷ XIX là thời kỳ mà sắt bắt đầu xâm nhập thực sự vào kỹ thuật: năm 1778, chiếc cầu sắt đầu tiên được xây dựng; năm 1788, ống dẫn nước đầu tiên làm bằng sắt đã được đưa vào sử dụng; năm 1818, chiếc tàu thủy đầu tiên bằng sắt ra đời. Sau đó nửa thế kỷ, vào năm 1868, ?oTuyển tập về biển? xuất bản ở London đã viết: ?oHiện nay, chiếc tàu thủy bằng sắt đầu tiên trên thế giới ?oVuncan? (Thần lửa) đóng năm 1818 đang được sửa chữa ở Grincoc. Năm mươi năm về trước, lúc nó được hạ khỏi giá lắp ráp, dân chúng từ khắp cả các vùng lân cận đã tụ tập lại để xem một điều kỳ lạ: chiếc tàu được đóng bằng sắt mà lại nổi trên mặt nước được ư??. Bốn năm sau, vào năm 1822, chiếc tàu thủy bằng sắt đầu tiên chạy bằng hơi nước đã chạy qua lại giữa London và Pari. Những con đường mà sau này được gọi là đường sắt đã trở thành nơi tiêu thụ rất nhiều sắt. Tuyến đường sắt đầu tiên đã được đưa vào sử dụng ở Anh năm 1825.
    Năm 1889, ở Pari đã hoàn thành việc xây dựng ngọn tháp hùng vĩ bằng sắt do kỹ sư nổi tiếng người Pháp Epfen (Gustave Eiffel) thiết kế. Nhiều người đương thời cho rằng, công trình đồ sộ cao 300 mét này có vẻ không bền vững, không chắc chắn. Đáp lại những kẻ hoài nghi, tác giả bản thiết kế đã khẳng định rằng, đứa con của ông sẽ đứng vững không dưới một phần tư thế kỷ. Thế mà đã gần một thế kỷ trôi qua rồi, còn tháp Epfen - biểu tượng của Pari, cho đến nay vẫn thu hút rất nhiều khách du lịch. Sự thật thì hồi đầu thế kỷ XX này, một số tờ báo nước ngoài đã đưa tin rằng, hình như tháp Epfen đã bị han gỉ nặng và có thể bị đổ. Nhưng việc giám định trạng thái của các kết cấu sắt do các nhà bác học và kỹ sự Pháp tiến hành đã cho thấy đó là một thứ ?otin vịt? thường thấy trên báo: kim loại được phủ một lớp sơn dày nên không bị han gỉ mấy.
    Tuy nhiên, như lưỡi gươm Đamoclet, nguy cơ bị han gỉ vẫn thường xuyên đe dọa các công trình và các sản phẩm bằng sắt. Sự han gỉ, hay sự ăn mòn là kẻ thù nguy hiểm của sắt. Chỉ cần đưa ra con số sau đây cũng đủ thấy rõ điều đó: chỉ trong khoảng thời gian bạn đọc xong trang sách này, trên thế giới, sự han gỉ đã hủy hoại hàng nghìn tấn thép và gang - các hợp kim công nghiệp cơ bản của sắt. Bởi vậy, ngay từ thời cổ, con người đã quan tâm đến việc bảo vệ thứ kim loại chủ yếu này khỏi sự ăn mòn. Trong các tác phẩm của mình, nhà viết sử thời cổ Hy Lạp Herođot (thế kỷ thứ V trước công nguyên) đã nói đến việc mạ thiếc để giữ cho sắt khỏi bị han gỉ. Ở Ấn Độ, hội chống ăn mòn đã tồn tại từ 1.500 năm nay. Ở thế kỷ thứ XIII, hội này đã xây dựng đền thờ Mặt trời ở Konaraka trên bờ vịnh Bengan. Công trình này do chịu tác động của gió và hơi nước biển hàng mấy thế kỷ nên đã bị đổ nát, nhưng cột sắt của nó thì vẫn được bảo tồn ở trạng thái tốt. Có lẽ từ thời xa xưa, nhưng người thợ lành nghề Ân Độ đã biết cách bảo vệ kim loại khỏi bị ăn mòn.
    Cây cột trụ bằng sắt nổi tiếng - một trong những kỳ tích của thủ đô Ấn Độ cũng nói lên điều đó. Trong cuốn sách ?oSự ra đời của Ấn Độ?, Jaoahaclan Neru đã viết: ?oRõ ràng nước Ấn Độ cổ đại đã đạt được những thành tựu to lớn trong việc chế biến sắt. Gần Đeli, một cột trụ bằng sắt đứng sừng sững, nó các nhà bác học đến chỗ bế tắc vì họ không thể xác định được cách thức chế tạo ra nó mà giữ được cho sắt không bị oxi hóa và chống được các tác động khác của khí quyển?.
    Cây cột này được dựng năm 415 để tượng niệm vua Chanđragupta đệ nhị. Lúc đầu nó được dựng trước ngôi đền ở miền đông Ấn Độ, đến năm 1050 thì được vua Anang Pola chuyển về Đeli. Những người mê tín cho rằng, người nào đứng tựa lưng vào cột mà vòng tay qua cột chạm được nhau thì sẽ thực hiện được ý muốn thầm kín của mình. Từ thời xa xưa, những người đi cầu nguyện lũ lượt tụ tập về đây để mong thần linh ban cho một ít phước lành. Nhưng trong số những người này, liệu có ai được phù trợ không?... Cột này nặng gần 6,5 tấn, cao hơn 7 mét, đường kính giảm dần từ 42 centimet ở đáy đến 30 centimet ở đỉnh. Nó được làm bằng sắt gần như nguyên chất (99,72%). Có lẽ độ tinh khiết này là nguyên nhân dẫn đến sự tồn tại lâu đời của nó. Chẳng phải nghi ngờ gì nữa, trải qua bao nhiêu thế kỷ, bất kỳ một thứ sắt nào khác kém tinh khiết hơn, chắc hẳn đã biến thành đống gỉ rồi.
    Vậy thì các nhà luyện kim thời cổ đã chế tạo cây cột kỳ diệu này bằng cách nào mà sức tàn phá của thời gian đành bất lực với nó? Một số nhà văn viễn tưởng cũng không loại trừ khả năng là nó được chế tạo ở một hành tinh khác, rồi một đội phi hành vũ trụ đã chở nó đến trái đất như một thứ cờ hiệu, hoặc để làm quà tặng cho những người sống trên trái đất. Theo các ức thuyết khác thì cây cột được rèn từ một thiên thạch sắt rất lớn. Dẫu sao, các nhà bác học từng giải thích sự kiện này bằng nghệ thuật cao của các nhà luyện kim Ấn Độ cổ xưa vẫn nói đúng. Từ lâu, Ấn Độ đã nổi tiếng khắp thế giới bởi các sản phẩm thép của mình, mà cũng không phải ngẫu nhiên mà người Ba Tư có thành ngữ ?ochở thép đến Ấn Độ? tương tự như ?ochở củi về rừng?.
    Ngày nay, không ai còn ngạc nhiên về thép không gỉ thông thường. Cách đây không lâu lắm, ở Mỹ người ta đã cấp bằng phát minh về những lá thép không gỉ trong suốt. Chúng được chế tạo bằng phương pháp điện hóa học. Phương pháp này tạo nên những lỗ hổng cực kỳ nhỏ giữa các tinh thể riêng biệt, làm cho thép trở nên trong suốt.
    Trong thời đại chúng ta, các nhà hỏa luyện lành nghề đã tinh thông việc nấu luyện thứ kim loại có nhiều công dụng rất khác nhau này. Có loại thép nào mà bạn không gặp trong danh mục sản phẩm của các nhà máy luyện kim hiện đại! Nào là thép không gỉ và thép gió, nào là thép làm bi và thép làm lò xo, thép từ tính và thép không từ tính, thép bền nóng và thép chịu lạnh... Làm sao mà kể hết được tất cả mọi loại thép!
    Tại một nhà máy luyện kim ở nước Bỉ có một cỗ máy dùng để cán thép thành từng dải đồng thời khắc lên bề mặt của những dải thép này các đường vân hoa khác nhau. Bằng cách này có thể tạo cho thép có dạng như gỗ, da, vải và các vật liệu khác. Lá thép có bề mặt nổi vân hoa rất hợp ?okhẩu vị? của các nhà chế tạo ô tô, các nhà sản xuất máy móc, dụng cụ dùng trong đời sống hành ngày và các nhà kiến trúc.
    Anh ôm trái tim Trương Chi
    Chờ tan trong nước mắt
    Đi tìm em qua những chợ búa và xóm làng
    Qua những chiều tắt nắng
    Dấu chân anh trong cỏ còn đọng đầy mưa xuân

Chia sẻ trang này