1. Tuyển Mod quản lý diễn đàn. Các thành viên xem chi tiết tại đây

Một bài toán xác suất.

Chủ đề trong 'Toán học' bởi Thohry, 30/05/2007.

  1. 0 người đang xem box này (Thành viên: 0, Khách: 0)
  1. werty98

    werty98 Thành viên gắn bó với ttvnol.com

    Tham gia ngày:
    17/06/2003
    Bài viết:
    8.178
    Đã được thích:
    5.572
    Câu hỏi phụ dễ nhất để tớ dành :
    Giả sử mỗi người chỉ lấy n cây, khi đó xác suất thắng của mỗi người như nhau (đặt là P), xác suất hòa khi đó là 1-2P
    Bây giờ người thứ nhất bốc thêm 1 lá, khi đó xác suất để người đó thắng sẽ là: P x 1 + (1-2P) x 0.5 = 0.5
  2. dangiaothong

    dangiaothong Thành viên rất tích cực

    Tham gia ngày:
    10/09/2005
    Bài viết:
    4.854
    Đã được thích:
    7
    Em nghĩ là phải trừ đi trường hợp người bốc thêm bị lộ nữa!
  3. dangiaothong

    dangiaothong Thành viên rất tích cực

    Tham gia ngày:
    10/09/2005
    Bài viết:
    4.854
    Đã được thích:
    7
    Em nghĩ là phải trừ đi trường hợp người bốc thêm bị lộ nữa!
  4. Thohry

    Thohry Thành viên rất tích cực

    Tham gia ngày:
    20/12/2006
    Bài viết:
    2.926
    Đã được thích:
    1
    Đơn giản và chính xác, em lại vote bác * .
    Bây giờ phần chính là mời các bác tính lại XS của anh 2nd (ví dụ với n=6). Xin biện luận hợp lý , ** are waiting for you.
    Bài của anh Metamodel chưa biện luận hợp lý (hoặc em chưa hỉu) nên xem lại một chút.
    PS. Đúng là bài này phải tính trong excel (các ct khác càng tốt) vì không có 1 công thức tổng quát cho P2.
  5. Thohry

    Thohry Thành viên rất tích cực

    Tham gia ngày:
    20/12/2006
    Bài viết:
    2.926
    Đã được thích:
    1
    Đơn giản và chính xác, em lại vote bác * .
    Bây giờ phần chính là mời các bác tính lại XS của anh 2nd (ví dụ với n=6). Xin biện luận hợp lý , ** are waiting for you.
    Bài của anh Metamodel chưa biện luận hợp lý (hoặc em chưa hỉu) nên xem lại một chút.
    PS. Đúng là bài này phải tính trong excel (các ct khác càng tốt) vì không có 1 công thức tổng quát cho P2.
  6. Thohry

    Thohry Thành viên rất tích cực

    Tham gia ngày:
    20/12/2006
    Bài viết:
    2.926
    Đã được thích:
    1
    Xin lỗi bác Wty, máy báo '' bạn đã bình chọn thành viên này rồi''... Để lần sau dzậy.
  7. Thohry

    Thohry Thành viên rất tích cực

    Tham gia ngày:
    20/12/2006
    Bài viết:
    2.926
    Đã được thích:
    1
    Xin lỗi bác Wty, máy báo '' bạn đã bình chọn thành viên này rồi''... Để lần sau dzậy.
  8. metamodel

    metamodel Thành viên mới

    Tham gia ngày:
    12/12/2004
    Bài viết:
    283
    Đã được thích:
    2
    Hóa ra bạn chả hiểu gì về việc vì sao lại có hai công thức của A và B như vậy. Nếu bạn hiểu, thử giải thích hai công thức ấy xem.
    Tôi không biện luận gì cả mà viết hai công thưc đấy luôn, nên vấn đề chẳng ở chỗ có chặt chẽ hay không, mà vấn đề bạn có hiểu gì về hai công thức đấy không thôi.
    Còn về câu hỏi phụ của bạn, tôi nghĩ có thể CM bằng tổ hợp rằng B=2^2n.
    Nhưng tôi sẽ dùng phương pháp song ánh ở đây, để CM điều này.
    Thật vậy, tôi đã đưa ra 2^(2n+1) khả năng có thể có của dãy 2n+1 cây bài. Các khả năng này đều có cùng XS nên sau này ta có quyền chia A/T, B/T như đã nói.
    Thực ra có thể đưa ra dạng khả năng khác, chẳng hạn mỗi khả năng là số quân đỏ của anh1 và của anh2 chẳng hạn, nhưng khi đó XS lại không đều mà tuân theo phân bố nhị thức nên không áp dụng chia được.
    Bây giờ chia tập 2^(2n+1) khả năng ở trên thành 2 tập:
    -U gồm các khả năng mà anh1 thắng.
    -V gồm các khả năng mà anh1 không thắng.
    thì |U|+|V|=2^(2n+1) , |U| là lực lượng của U.
    Ta sẽ CM tồn tại song ánh giữa U và V như sau:
    Rõ ràng với mỗi ptử của U(là một khả năng mà anh1 thắng và là một dãy 2n+1 cây bài), ta đổi đen thành đỏ, đỏ thành đen, sẽ đuợc một dãy mà số cây đỏ của anh2 >= của anh1(vì trước đó chúng màu đen), vậy dãy mới này là một ptử của V.
    Tức là vừa chỉ ra một đơn ánh từ U vào V.
    Dễ thấy rằng với mỗi ptử của V, cũng đổi đen thành đỏ, đỏ thành đen lại đuợc một ptử của U.
    Vậy tồn tại song ánh giữa U và V nên |U|=|V|=2^2n.
    Nên B=|U|=2^2n và [XS anh1 thắng] = 1/2.
    Được metamodel sửa chữa / chuyển vào 23:09 ngày 31/05/2007
  9. metamodel

    metamodel Thành viên mới

    Tham gia ngày:
    12/12/2004
    Bài viết:
    283
    Đã được thích:
    2
    Hóa ra bạn chả hiểu gì về việc vì sao lại có hai công thức của A và B như vậy. Nếu bạn hiểu, thử giải thích hai công thức ấy xem.
    Tôi không biện luận gì cả mà viết hai công thưc đấy luôn, nên vấn đề chẳng ở chỗ có chặt chẽ hay không, mà vấn đề bạn có hiểu gì về hai công thức đấy không thôi.
    Còn về câu hỏi phụ của bạn, tôi nghĩ có thể CM bằng tổ hợp rằng B=2^2n.
    Nhưng tôi sẽ dùng phương pháp song ánh ở đây, để CM điều này.
    Thật vậy, tôi đã đưa ra 2^(2n+1) khả năng có thể có của dãy 2n+1 cây bài. Các khả năng này đều có cùng XS nên sau này ta có quyền chia A/T, B/T như đã nói.
    Thực ra có thể đưa ra dạng khả năng khác, chẳng hạn mỗi khả năng là số quân đỏ của anh1 và của anh2 chẳng hạn, nhưng khi đó XS lại không đều mà tuân theo phân bố nhị thức nên không áp dụng chia được.
    Bây giờ chia tập 2^(2n+1) khả năng ở trên thành 2 tập:
    -U gồm các khả năng mà anh1 thắng.
    -V gồm các khả năng mà anh1 không thắng.
    thì |U|+|V|=2^(2n+1) , |U| là lực lượng của U.
    Ta sẽ CM tồn tại song ánh giữa U và V như sau:
    Rõ ràng với mỗi ptử của U(là một khả năng mà anh1 thắng và là một dãy 2n+1 cây bài), ta đổi đen thành đỏ, đỏ thành đen, sẽ đuợc một dãy mà số cây đỏ của anh2 >= của anh1(vì trước đó chúng màu đen), vậy dãy mới này là một ptử của V.
    Tức là vừa chỉ ra một đơn ánh từ U vào V.
    Dễ thấy rằng với mỗi ptử của V, cũng đổi đen thành đỏ, đỏ thành đen lại đuợc một ptử của U.
    Vậy tồn tại song ánh giữa U và V nên |U|=|V|=2^2n.
    Nên B=|U|=2^2n và [XS anh1 thắng] = 1/2.
    Được metamodel sửa chữa / chuyển vào 23:09 ngày 31/05/2007
  10. Thohry

    Thohry Thành viên rất tích cực

    Tham gia ngày:
    20/12/2006
    Bài viết:
    2.926
    Đã được thích:
    1
    Có thể là em chưa hiểu cách của anh, nhưng như vậy thì anh cũng nên lý giải rõ hơn, ví dụ đoạn T=1/(2^2n+1) thì rõ rồi, nhưng đưa độp công thức của A và B ra mà không giải thích gì thì cũng làm cho nhiều người khó hiểu.
    Em đã viết lại công thức và viết mã để chạy thì cả P1 và P2 đều không có cái nào =1/2 cả. Nếu mã đúng thì công thức của anh sai.
    Dưới đây là công thức viết lại anh xem có đúng ý không:
    [​IMG]

Chia sẻ trang này