1. Tuyển Mod quản lý diễn đàn. Các thành viên xem chi tiết tại đây

Thử thách Anh-Việt no.2

Chủ đề trong 'Anh (English Club)' bởi nguyen_minh_son_new, 30/03/2003.

  1. 1 người đang xem box này (Thành viên: 0, Khách: 1)
  1. nebula_ciaovn

    nebula_ciaovn Thành viên quen thuộc

    Tham gia ngày:
    23/04/2002
    Bài viết:
    206
    Đã được thích:
    0
    Hình như đây là T.A chuyên ngành xây dựng thì phải.
    BẠn Homangsimi dịch ổn rồi, chỉ có điều là từ "building" ở đây không phải là verb, và "modelling" (noun) cần được hiểu là "làm mô hình bằng (cái gì/thông qua cái gì).
    Do đó, "Building infomation modelling" = "Làm mô hình bằng thông tin xây dựng" chứ ko theo nghĩa "Xây dựng mô hình thông tin". Bởi vì, nếu tớ nhớ ko nhầm, trong IT phần "System analysis and design" thì người ta đề cập đến các mô hình đơn thuần và được dùng với từ "model" (Waterfall model and Spiral model) chứ ko dùng từ "modelling" (lý do: đã nêu trên).
    Và Autodesk theo cách viết thì ko nên dịch nghĩa vì đó là tên riêng, có thể như dạng Inc.
  2. nebula_ciaovn

    nebula_ciaovn Thành viên quen thuộc

    Tham gia ngày:
    23/04/2002
    Bài viết:
    206
    Đã được thích:
    0
    Hình như đây là T.A chuyên ngành xây dựng thì phải.
    BẠn Homangsimi dịch ổn rồi, chỉ có điều là từ "building" ở đây không phải là verb, và "modelling" (noun) cần được hiểu là "làm mô hình bằng (cái gì/thông qua cái gì).
    Do đó, "Building infomation modelling" = "Làm mô hình bằng thông tin xây dựng" chứ ko theo nghĩa "Xây dựng mô hình thông tin". Bởi vì, nếu tớ nhớ ko nhầm, trong IT phần "System analysis and design" thì người ta đề cập đến các mô hình đơn thuần và được dùng với từ "model" (Waterfall model and Spiral model) chứ ko dùng từ "modelling" (lý do: đã nêu trên).
    Và Autodesk theo cách viết thì ko nên dịch nghĩa vì đó là tên riêng, có thể như dạng Inc.
  3. nguyen_minh_son_new

    nguyen_minh_son_new Thành viên quen thuộc

    Tham gia ngày:
    29/01/2002
    Bài viết:
    360
    Đã được thích:
    0
    Bác nói thế nào ấy chứ.Em thì em cũng dịch được tạm tạm(rất nhiều cái em không biết dịch thế nào cả),nhưng mà em còn đang phải dịch hơi bị nhiều,dấu biết rằng nhờ các bác nhiều thế này cũng hơi phiền nhưng mà em chẳng biết nhờ ai cả,ai rỗi thì dịch hộ em với.Biết đâu cũng có nhiều người cần như em thì sao?Cảm ơn bác Homangsimi nhe,bác nào có thể thì dịch hộ em,không giúp em thì không nên chê bai làm em chẳng giám nhờ các bác nữa.Cũng thú nhận đây là chuyên môn của em,em cũng hơi bị kém,nhờ các bác chỉ bảo với.Những ai quan tâm đến nghành Xây Dựng thì vào đây chúng ta cùng thảo luận.Okie
    2. The Characteristics of Building Information Modelling
    Digital Databases
    Change Management
    Reuse of Information
    Building information modelling solutions create and operate on digital databases for collaboration, manage change throughout those databases so that a change to any part of the database is coordinated in all other parts, and capture and preserve information for reuse by ad***ional industry-specific applications.
    Digital Databases
    Building information modelling solutions create and operate on digital databases for collaboration. The building industry has tra***ionally illustrated building projects through drawings and added information over those illustrations via notes and specifications. CAD technology automated that process, and object-oriented CAD extended the idea of adding information to illustrations and graphics into software. The result of earlier manual drafting, graphics CAD systems, and object-oriented CAD systems were identical: the creation of graphic abstractions of the intended building design.
    The principles of building information modelling turn this relationship around. Building information modelling applications start with the idea of capturing and managing information about the building, and then present that information back as conventional illustrations or in any other appropriate way. A building information model captures building information at the moment of creation, stores and manages it in a building information database, and makes it available for use and reuse at every other point in the project. Drawings become a view into the database that describes the building itself.
    In a building information modeller, the building information is stored in a database instead of in a format (such as a drawing file or spreadsheet) predicated on a presentation format. The building information modeller then presents information from the database for e***ing and review in presentation formats that are appropriate and customary for the particular user. Architects, for example, work on the information using the conventions of the highly stylized symbolic graphic language of building design (such as plan, section, and elevation), entering and reviewing information in a format that looks just like the architectural drawings they have worked with for years. They work on the building information through a drawing rather than working directly on a drawing in the computer. Similarly, structural engineers work with the data presented graphically in familiar framing and bracing diagrams, quite different from the architects?T interface to the data. Builders work with some of these same presentations and also isometric views of the building geometry to study phasing and coordination issues and databases or spreadsheets of quantity data provided from the building information model.
    Although each professional working on the building project views the building information in the way he or she expects to see it, these presentations of the information?"drawings, schedules, cost estimates, other conventional presentations of the building information?"are all views into the same information model. While each discipline interacts with familiar and customary views of the information, the building information modeller assures that changes made in any of these views is reflected in all other presentations.
    Building information models organize collaboration by the building team through digital databases. The building information model can be distributed to individual team members working on a network or sharing files through project collaboration tools such as the Autodesk® Buzzsaw" service. Team members work independently on local data sets while the building information modelling solution manages changes to the model from each of these local databases in a central shared location. Team members can compare their work to concurrent work by other team members and dynamically reserve and release portions of the database for use over the network. A record of these interactions?"who changed what, and when?"is available for review, and a history of all changes made by all team members can be preserved in the building information model for as long as this information is useful. Changes can be selectively rolled back *****pport investigations of options or changes in design direction.
    Change Management
    Building information modelling solutions manage iterative change through a building?Ts design, construction, and operation. A change to any part of the database is coordinated in all other parts.
    The process of building design and documentation is iterative. The understanding of a design problem develops during the design process. In ad***ion to the refinements typical to any design process, a new insight into the design problem may lead the design team to discover that the solution could be quite different, and possibly better. At that point another iteration occurs that may reconsider earlier assumptions. Managing this iterative change is an inherent part of the design process. Technology tools and work processes that do not allow the design to be refined and reconsidered in an iterative way as the project develops discourage the best possible solutions to the design problem. Building information modelling solutions, because of the management of relationships within the data and change to that data, are ideal for this approach. And using building information modelling tools results in the highest quality project for the owner and the best possible work by the team.
    Maintaining an internally consistent representation of the building as a database improves drawing coordination and reduces errors in the documents to the benefit of all building team members. Time that would otherwise be spent in manual document checking and coordination can be invested instead in the real work of making the building project better. The resulting documents are of higher quality, and thus the costs of changes and coordination are reduced. Building information modelling tools enable the design, construction, and occupancy of the building to proceed with less friction and fewer difficulties than conventional tools.
    Estimating, procurement, and construction are also iterative processes of definition and elaboration. Specific materials and products are selected from among the range of possibilities that meet the project specification. Selection, refinements, and substitutions may result in changes to some aspects of the design. Ambiguities in the design documents are resolved between the design and construction teams before construction. The construction and design teams consider changes to improve constructability and value for the client. Each of these decisions requires evaluation and that new information be captured *****pport later evaluations as well as operation and management of the building. Building information modelling solutions capture and manage this information and make it available *****pport the collaborative process.
    The operation of buildings after completion is also an iterative process that is well supported by building information modelling solutions. The first occupancy of a building?"the end of the conventional design and construction cycle?"is just the beginning of the life and use of the structure. The evolving occupancy of the building together with the maintenance requirements of the building materials, assemblies, and systems result in changes throughout the life of the building. Building information modelling supports the building life cycle with solutions for the design and documentation of the continuing maintenance, renovation, and renewal of the building itself within the building information model. For example, information about all the successive renovations to a building can be maintained in the building information model, forming a record of all changes that have been made to the building in its history.
    Reuse of Information
    Building information modelling solutions capture and preserve information for reuse by ad***ional industry-specific applications. Successful information technology solutions outside the building industry are based on one primary principle: Data is captured once, as close to its point of origin as possible, and stored in a way that it is always easily available and can be presented in context whenever required. A simple example is a personal financial management package that captures information from your cheque-book register as you write checks and make deposits, stores and manages that information for a variety of purposes, and presents it back as your income tax return in one case and a statement of net worth in another. Building information modelling accomplishes the same thing for the building industry.
    The moment that an architect sketches the outline of a building on a site survey, data is created. The general size of the building footprint is now known. General program requirements and planning ratios can be applied to deduce the overall building configuration. Similarly, when an architect is working out the building plan, data is being created that can be re-presented in interior elevations, sections, and schedules. Conventional tools require all this data to be re-derived at the point in the project where the information about building size or sections and schedules is required. Building information modelling tools capture this data at the moment it is created, store it, and make it available for re-presentation as information in other documents and artefacts as needed.
    A construction cost estimator traces over a drawing on a digitizing tablet to derive quantities for a cost estimate or bid or to measure that drawing manually. The construction project manager in the same company traces over these same drawings to develop plans for construction sequencing and phasing. Using building information modelling, instead of tracing over the plans for the quantities, the estimator and the design team can interact with the building information model. Or, if the project team is not ready for that level of collaboration, the estimator can trace over digital plans in software, constructing a building information model in about the same amount of time required for the manual tracing. Now this data is captured in the building information model itself and can be re-presented as a phasing and sequencing plan. A design-build firm, in which the building information model can be easily shared between design and construction professionals, can realize even greater benefits.
    A third example is the use of schedule data in a building information model for inventory management in a retail operation. As the display unit layout is planned for a store in a building information model, the possible configurations and capacity for each unit are captured and reported back later in a schedule for inventory calculations, and the inventory schedule information can be linked to a procurement system to coordinate the management of inventory with the capacity of the store. The building information model data extends to the support of the store operations.
    Reuse of building information leads to connections from Autodesk?Ts current solutions to other applications for energy analysis, structural analysis, cost reporting, facility management, and many others. The persistence of the building information model through the building design, procurement, construction, and operation supports the management of workflow and process around this information
    nguyen minh son
  4. nguyen_minh_son_new

    nguyen_minh_son_new Thành viên quen thuộc

    Tham gia ngày:
    29/01/2002
    Bài viết:
    360
    Đã được thích:
    0
    Bác nói thế nào ấy chứ.Em thì em cũng dịch được tạm tạm(rất nhiều cái em không biết dịch thế nào cả),nhưng mà em còn đang phải dịch hơi bị nhiều,dấu biết rằng nhờ các bác nhiều thế này cũng hơi phiền nhưng mà em chẳng biết nhờ ai cả,ai rỗi thì dịch hộ em với.Biết đâu cũng có nhiều người cần như em thì sao?Cảm ơn bác Homangsimi nhe,bác nào có thể thì dịch hộ em,không giúp em thì không nên chê bai làm em chẳng giám nhờ các bác nữa.Cũng thú nhận đây là chuyên môn của em,em cũng hơi bị kém,nhờ các bác chỉ bảo với.Những ai quan tâm đến nghành Xây Dựng thì vào đây chúng ta cùng thảo luận.Okie
    2. The Characteristics of Building Information Modelling
    Digital Databases
    Change Management
    Reuse of Information
    Building information modelling solutions create and operate on digital databases for collaboration, manage change throughout those databases so that a change to any part of the database is coordinated in all other parts, and capture and preserve information for reuse by ad***ional industry-specific applications.
    Digital Databases
    Building information modelling solutions create and operate on digital databases for collaboration. The building industry has tra***ionally illustrated building projects through drawings and added information over those illustrations via notes and specifications. CAD technology automated that process, and object-oriented CAD extended the idea of adding information to illustrations and graphics into software. The result of earlier manual drafting, graphics CAD systems, and object-oriented CAD systems were identical: the creation of graphic abstractions of the intended building design.
    The principles of building information modelling turn this relationship around. Building information modelling applications start with the idea of capturing and managing information about the building, and then present that information back as conventional illustrations or in any other appropriate way. A building information model captures building information at the moment of creation, stores and manages it in a building information database, and makes it available for use and reuse at every other point in the project. Drawings become a view into the database that describes the building itself.
    In a building information modeller, the building information is stored in a database instead of in a format (such as a drawing file or spreadsheet) predicated on a presentation format. The building information modeller then presents information from the database for e***ing and review in presentation formats that are appropriate and customary for the particular user. Architects, for example, work on the information using the conventions of the highly stylized symbolic graphic language of building design (such as plan, section, and elevation), entering and reviewing information in a format that looks just like the architectural drawings they have worked with for years. They work on the building information through a drawing rather than working directly on a drawing in the computer. Similarly, structural engineers work with the data presented graphically in familiar framing and bracing diagrams, quite different from the architects?T interface to the data. Builders work with some of these same presentations and also isometric views of the building geometry to study phasing and coordination issues and databases or spreadsheets of quantity data provided from the building information model.
    Although each professional working on the building project views the building information in the way he or she expects to see it, these presentations of the information?"drawings, schedules, cost estimates, other conventional presentations of the building information?"are all views into the same information model. While each discipline interacts with familiar and customary views of the information, the building information modeller assures that changes made in any of these views is reflected in all other presentations.
    Building information models organize collaboration by the building team through digital databases. The building information model can be distributed to individual team members working on a network or sharing files through project collaboration tools such as the Autodesk® Buzzsaw" service. Team members work independently on local data sets while the building information modelling solution manages changes to the model from each of these local databases in a central shared location. Team members can compare their work to concurrent work by other team members and dynamically reserve and release portions of the database for use over the network. A record of these interactions?"who changed what, and when?"is available for review, and a history of all changes made by all team members can be preserved in the building information model for as long as this information is useful. Changes can be selectively rolled back *****pport investigations of options or changes in design direction.
    Change Management
    Building information modelling solutions manage iterative change through a building?Ts design, construction, and operation. A change to any part of the database is coordinated in all other parts.
    The process of building design and documentation is iterative. The understanding of a design problem develops during the design process. In ad***ion to the refinements typical to any design process, a new insight into the design problem may lead the design team to discover that the solution could be quite different, and possibly better. At that point another iteration occurs that may reconsider earlier assumptions. Managing this iterative change is an inherent part of the design process. Technology tools and work processes that do not allow the design to be refined and reconsidered in an iterative way as the project develops discourage the best possible solutions to the design problem. Building information modelling solutions, because of the management of relationships within the data and change to that data, are ideal for this approach. And using building information modelling tools results in the highest quality project for the owner and the best possible work by the team.
    Maintaining an internally consistent representation of the building as a database improves drawing coordination and reduces errors in the documents to the benefit of all building team members. Time that would otherwise be spent in manual document checking and coordination can be invested instead in the real work of making the building project better. The resulting documents are of higher quality, and thus the costs of changes and coordination are reduced. Building information modelling tools enable the design, construction, and occupancy of the building to proceed with less friction and fewer difficulties than conventional tools.
    Estimating, procurement, and construction are also iterative processes of definition and elaboration. Specific materials and products are selected from among the range of possibilities that meet the project specification. Selection, refinements, and substitutions may result in changes to some aspects of the design. Ambiguities in the design documents are resolved between the design and construction teams before construction. The construction and design teams consider changes to improve constructability and value for the client. Each of these decisions requires evaluation and that new information be captured *****pport later evaluations as well as operation and management of the building. Building information modelling solutions capture and manage this information and make it available *****pport the collaborative process.
    The operation of buildings after completion is also an iterative process that is well supported by building information modelling solutions. The first occupancy of a building?"the end of the conventional design and construction cycle?"is just the beginning of the life and use of the structure. The evolving occupancy of the building together with the maintenance requirements of the building materials, assemblies, and systems result in changes throughout the life of the building. Building information modelling supports the building life cycle with solutions for the design and documentation of the continuing maintenance, renovation, and renewal of the building itself within the building information model. For example, information about all the successive renovations to a building can be maintained in the building information model, forming a record of all changes that have been made to the building in its history.
    Reuse of Information
    Building information modelling solutions capture and preserve information for reuse by ad***ional industry-specific applications. Successful information technology solutions outside the building industry are based on one primary principle: Data is captured once, as close to its point of origin as possible, and stored in a way that it is always easily available and can be presented in context whenever required. A simple example is a personal financial management package that captures information from your cheque-book register as you write checks and make deposits, stores and manages that information for a variety of purposes, and presents it back as your income tax return in one case and a statement of net worth in another. Building information modelling accomplishes the same thing for the building industry.
    The moment that an architect sketches the outline of a building on a site survey, data is created. The general size of the building footprint is now known. General program requirements and planning ratios can be applied to deduce the overall building configuration. Similarly, when an architect is working out the building plan, data is being created that can be re-presented in interior elevations, sections, and schedules. Conventional tools require all this data to be re-derived at the point in the project where the information about building size or sections and schedules is required. Building information modelling tools capture this data at the moment it is created, store it, and make it available for re-presentation as information in other documents and artefacts as needed.
    A construction cost estimator traces over a drawing on a digitizing tablet to derive quantities for a cost estimate or bid or to measure that drawing manually. The construction project manager in the same company traces over these same drawings to develop plans for construction sequencing and phasing. Using building information modelling, instead of tracing over the plans for the quantities, the estimator and the design team can interact with the building information model. Or, if the project team is not ready for that level of collaboration, the estimator can trace over digital plans in software, constructing a building information model in about the same amount of time required for the manual tracing. Now this data is captured in the building information model itself and can be re-presented as a phasing and sequencing plan. A design-build firm, in which the building information model can be easily shared between design and construction professionals, can realize even greater benefits.
    A third example is the use of schedule data in a building information model for inventory management in a retail operation. As the display unit layout is planned for a store in a building information model, the possible configurations and capacity for each unit are captured and reported back later in a schedule for inventory calculations, and the inventory schedule information can be linked to a procurement system to coordinate the management of inventory with the capacity of the store. The building information model data extends to the support of the store operations.
    Reuse of building information leads to connections from Autodesk?Ts current solutions to other applications for energy analysis, structural analysis, cost reporting, facility management, and many others. The persistence of the building information model through the building design, procurement, construction, and operation supports the management of workflow and process around this information
    nguyen minh son
  5. thienthan1080

    thienthan1080 Thành viên mới

    Tham gia ngày:
    21/01/2002
    Bài viết:
    29
    Đã được thích:
    1
    [Tui cứ nghĩ là Autodesk is a American software company cơ đấy.
    Dễ thế mà cũng không dịch nổi.
    Thien Lan
  6. thienthan1080

    thienthan1080 Thành viên mới

    Tham gia ngày:
    21/01/2002
    Bài viết:
    29
    Đã được thích:
    1
    [Tui cứ nghĩ là Autodesk is a American software company cơ đấy.
    Dễ thế mà cũng không dịch nổi.
    Thien Lan
  7. coffeechocolat

    coffeechocolat Thành viên mới

    Tham gia ngày:
    06/12/2002
    Bài viết:
    13
    Đã được thích:
    0
    A police officer arrives at the scene of the collision of the two snowmobiles to find both drivers unconscious. When the two vehicles collided, their skis became entangled and the two snowmobiles remained locked together as they skidded to a stop. One driver was thrown clear of the mishap, but the other driver remained in the driverâ?Ts seat. The posted speed limit for snowmobiles in this cottage area is 60 km/h. The information the police officer obtained from eye witness accounts and collision scene measurements are provided in table1. One witness described how driver A was thrown horizontally at a constant speed from his seat ( 0.5m above the snow surface) to his final resting position
    a, Use the physic of kinematics, projectiles, conservation of momentum, and metric conversions to estimate the pre-collision speed of both vehicles
    b, What assumptions did you make in your calculations?
    c, Which, if either, of the two vehicles was speeding?
    d, How would you respond if asked how confident you were of the results of your calculations? Could you be so sure that vehicle B was speeding that you would recommend the officer charge the driver?
    Table1:
    Mass of driver A= 80kg
    Mass of driver B=90kg
    Mass of vehicle A=270kg
    Mass of vehicle B=310kg
    Direction of vehicle A before collision [E]
    Direction of vehicle A before collision [E30N]
    Direction of entangled vehicles A and B after collision[E15N]
    Length of final skid 18m
    Displacement of driver A from point of impact 8m
    Time from impact to end of skid 2.5s
    [ I know that i'm wrong when i post this problem in ENglish club, but i don't know how to translate to vietnamese. And thi's my assignment for tomorrow. Please help me]
    thank you very much
  8. coffeechocolat

    coffeechocolat Thành viên mới

    Tham gia ngày:
    06/12/2002
    Bài viết:
    13
    Đã được thích:
    0
    A police officer arrives at the scene of the collision of the two snowmobiles to find both drivers unconscious. When the two vehicles collided, their skis became entangled and the two snowmobiles remained locked together as they skidded to a stop. One driver was thrown clear of the mishap, but the other driver remained in the driverâ?Ts seat. The posted speed limit for snowmobiles in this cottage area is 60 km/h. The information the police officer obtained from eye witness accounts and collision scene measurements are provided in table1. One witness described how driver A was thrown horizontally at a constant speed from his seat ( 0.5m above the snow surface) to his final resting position
    a, Use the physic of kinematics, projectiles, conservation of momentum, and metric conversions to estimate the pre-collision speed of both vehicles
    b, What assumptions did you make in your calculations?
    c, Which, if either, of the two vehicles was speeding?
    d, How would you respond if asked how confident you were of the results of your calculations? Could you be so sure that vehicle B was speeding that you would recommend the officer charge the driver?
    Table1:
    Mass of driver A= 80kg
    Mass of driver B=90kg
    Mass of vehicle A=270kg
    Mass of vehicle B=310kg
    Direction of vehicle A before collision [E]
    Direction of vehicle A before collision [E30N]
    Direction of entangled vehicles A and B after collision[E15N]
    Length of final skid 18m
    Displacement of driver A from point of impact 8m
    Time from impact to end of skid 2.5s
    [ I know that i'm wrong when i post this problem in ENglish club, but i don't know how to translate to vietnamese. And thi's my assignment for tomorrow. Please help me]
    thank you very much
  9. lilly_of_the_valley

    lilly_of_the_valley Thành viên quen thuộc

    Tham gia ngày:
    18/04/2002
    Bài viết:
    533
    Đã được thích:
    0
    Tớ chả rõ bạn muốn mọi người giúp bạn cái gì, nếu bạn muốn mọi người dịch hộ thì tớ sẽ thử dịch xem. Từ chuyên môn vật lý tớ không biết lắm nhưng đại ý thì chắc là đúng đấy.
    Một sĩ quan cảnh sát tới hiện trường nơi 2 chiếc xe trượt tuyết có động cơ đâm vào nhau và thấy cả 2 tài xế đều đã bất tỉnh. Khi va vào nhau, thanh trượt của xe này bị vướng vào thanh trượt của xe kia và khi 2 chiếc xe trượt dừng lại thì chúng vẫn bị mắc chặt vào nhau. Một trong số 2 người lái xe không may đã bị văng ra ngoài trong khi người kia vẫn nằm trên ghế tài xế. Tốc độ tối đa quy định dành cho xe trượt tuyết có gắn động cơ là 60 km/h ở khu vực nông thôn. Những thông tin mà người sĩ quan cảnh sát thu thập được từ biên bản phỏng vấn những người tận mắt chứng kiến cũng như từ công tác đo đạc tại hiện trường vụ ca chạm được cho trong bảng 1. Một nhân chứng đã mô tả cảnh người lái xe A bị văng ngang với vận tốc không đổi từ ghế tài xế cho tới nơi anh ta hiện đang nằm.
    Hãy dùng những kiến thức về chuyển động học, sự bắn ra khỏi xe của người tài xế, sự bảo tồn mômen và các phép chuyển đổi sang mét để xác định vận tốc trước khi va chạm của 2 chiếc xe.
    Bạn đã sử dụng những giả định gì trong quá trình tính toán?
    Chiếc xe nào đã đi quá tốc độ quy định?
    Bạn sẽ trả lời thế nào khi được hỏi bạn tin tưởng vào kết quả tính toán của mình đến mức độ nào? Liệu bạn có đủ chắc chắn rằng lái xe B đã đi quá tốc độ quy định để khuyên người sĩ quan cảnh sát phạt anh ta hay không?
    Bảng 1:
    Khối lượng của tài xế A: 80 Kg
    Khối lượng của tài xế B: 90 kg
    Khối lượng của xe A : 270 kg
    Khối lượng của xe B : 310 kg.
    Hướng xe A chạy trước khi va chạm: E
    Hướng xe B chạy trước khi va chạm: E30N (chắc E là hướng Đông, N là hướng Bắc nhỉ)
    Hướng 2 xe mắc vào nhau sau khi va chạm: E15N
    Độ dài vết trượt cuối: 18m
    Khoảng cách từ chỗ lái xe A nằm sau khi bị hất văng đến chỗ va chạm xảy ra: 8m
    Thời gian từ khi va chạm xảy ra đến khi 2 xe dừng lại hẳn: 2,5 giây.

    Money is not the most important thing on earth.
    Love is.
    Fortunately,I LOVE MONEY!
  10. lilly_of_the_valley

    lilly_of_the_valley Thành viên quen thuộc

    Tham gia ngày:
    18/04/2002
    Bài viết:
    533
    Đã được thích:
    0
    Tớ chả rõ bạn muốn mọi người giúp bạn cái gì, nếu bạn muốn mọi người dịch hộ thì tớ sẽ thử dịch xem. Từ chuyên môn vật lý tớ không biết lắm nhưng đại ý thì chắc là đúng đấy.
    Một sĩ quan cảnh sát tới hiện trường nơi 2 chiếc xe trượt tuyết có động cơ đâm vào nhau và thấy cả 2 tài xế đều đã bất tỉnh. Khi va vào nhau, thanh trượt của xe này bị vướng vào thanh trượt của xe kia và khi 2 chiếc xe trượt dừng lại thì chúng vẫn bị mắc chặt vào nhau. Một trong số 2 người lái xe không may đã bị văng ra ngoài trong khi người kia vẫn nằm trên ghế tài xế. Tốc độ tối đa quy định dành cho xe trượt tuyết có gắn động cơ là 60 km/h ở khu vực nông thôn. Những thông tin mà người sĩ quan cảnh sát thu thập được từ biên bản phỏng vấn những người tận mắt chứng kiến cũng như từ công tác đo đạc tại hiện trường vụ ca chạm được cho trong bảng 1. Một nhân chứng đã mô tả cảnh người lái xe A bị văng ngang với vận tốc không đổi từ ghế tài xế cho tới nơi anh ta hiện đang nằm.
    Hãy dùng những kiến thức về chuyển động học, sự bắn ra khỏi xe của người tài xế, sự bảo tồn mômen và các phép chuyển đổi sang mét để xác định vận tốc trước khi va chạm của 2 chiếc xe.
    Bạn đã sử dụng những giả định gì trong quá trình tính toán?
    Chiếc xe nào đã đi quá tốc độ quy định?
    Bạn sẽ trả lời thế nào khi được hỏi bạn tin tưởng vào kết quả tính toán của mình đến mức độ nào? Liệu bạn có đủ chắc chắn rằng lái xe B đã đi quá tốc độ quy định để khuyên người sĩ quan cảnh sát phạt anh ta hay không?
    Bảng 1:
    Khối lượng của tài xế A: 80 Kg
    Khối lượng của tài xế B: 90 kg
    Khối lượng của xe A : 270 kg
    Khối lượng của xe B : 310 kg.
    Hướng xe A chạy trước khi va chạm: E
    Hướng xe B chạy trước khi va chạm: E30N (chắc E là hướng Đông, N là hướng Bắc nhỉ)
    Hướng 2 xe mắc vào nhau sau khi va chạm: E15N
    Độ dài vết trượt cuối: 18m
    Khoảng cách từ chỗ lái xe A nằm sau khi bị hất văng đến chỗ va chạm xảy ra: 8m
    Thời gian từ khi va chạm xảy ra đến khi 2 xe dừng lại hẳn: 2,5 giây.

    Money is not the most important thing on earth.
    Love is.
    Fortunately,I LOVE MONEY!

Chia sẻ trang này